期刊文献+

动态环境下移动机器人导航行为函数建模 被引量:3

A Behavior Function Model on Mobile Robot Navigation in Dynamic Environment
下载PDF
导出
摘要 针对机器人自主导航中行为划分较多的问题,机器人依据自身感知数据建立了个体动态决策空间,并在此空间内建立了方向角函数和速率函数.分别给出了函数的设计过程,通过动态修正行为函数参数,快速有效地调整机器人方向角及速率,能够成功实现避障和目标点的奔向过程.由于函数建模是基于个体决策空间进行的,所以该方法不受机器人数量的限制,有效地提高了系统的分布式特性.通过仿真验证了该方法的可行性和有效性,并分析了行为函数参数对机器人导航过程的影响. For the problem that there have been lots of behavior functions in autonomous mobile robots naviga- tion, a individual dynamic decision space was established in terms of sensory data by robots themselves. Then two behavior functions consist of orientation angle function and speed function were designed in the decision space, and the design processes of behaviors were proposed respectively. The orientation angle and speed could be quickly and effectively adjusted with the dynamic correcting of the behavior function parameters. Avoiding obstacle and moving to the target point could be achieved in a dynamic environment in this approach. Due to the function modeling is based on individual decision space, so this method is not restricted by the number of robots, the distributed nature of the system is effectively improved. The feasibility and effectiveness had been verified through the simulation, meanwhile the influence on robot navigation with respect to the parameter was analyzed.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第5期547-552,共6页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(61004127) 山西省回国留学人员科研资助项目(2013-077)
关键词 机器人导航 动态决策空间 方向角函数 速率函数 robot navigation dynamic decision space orientation angle function speed function
  • 相关文献

参考文献10

二级参考文献103

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用,2005,22(5):703-707. 被引量:40
  • 3刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:74
  • 4Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 5Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 6Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 7Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 8De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 9Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 10Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.

共引文献514

同被引文献21

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部