期刊文献+

Design of double-weight code for synchronous OCDMA systems with power control 被引量:2

Design of double-weight code for synchronous OCDMA systems with power control
原文传递
导出
摘要 Double-weight optical code division multiple access(OCDMA) systems are proposed for studying differentiated quality-of-service transmission. Based on quadratic congruence code(QCC), we construct a one-dimensional double-weight code family, which can be well utilized in incoherent synchronous double-weight OCDMA networks. By introducing algebraic transformation to code sequences of QCC in level 1, we obtain multiple double-weight codes with cross-correlation 1. Under the same-bit-power assumption, the performance of low-weight codes can be significantly improved and is always superior to that of high-weight codes in double-weight OCDMA systems with power control. This property is contrary to previous conclusions under the same-chip-power assumption. Double-weight optical code division multiple access(OCDMA) systems are proposed for studying differentiated quality-of-service transmission. Based on quadratic congruence code(QCC), we construct a one-dimensional double-weight code family, which can be well utilized in incoherent synchronous double-weight OCDMA networks. By introducing algebraic transformation to code sequences of QCC in level 1, we obtain multiple double-weight codes with cross-correlation 1. Under the same-bit-power assumption, the performance of low-weight codes can be significantly improved and is always superior to that of high-weight codes in double-weight OCDMA systems with power control. This property is contrary to previous conclusions under the same-chip-power assumption.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第11期40-44,共5页 中国光学快报(英文版)
基金 supported by the National"863"Program of China(No.2012AA011301) the National"973"Program of China(No.2010CB328302)
关键词 Codes (symbols) Optical communication Power control Quality of service Codes (symbols) Optical communication Power control Quality of service
  • 相关文献

参考文献12

  • 1B. M. Ghaffari and J. A. Salelfi, IEEE Trans. Commun. 5, 1424 (2009).
  • 2L. S. Chen, G. C. Yang, C. Y. Chang, and W. C. Kwong, J. Lightw. Technol. 21, 3293 (2011).
  • 3A. N. Z. Rashed, A. E. A. Mohammed, and O. M. A. Dardeer, Chin. Opt. Lett. 12, 050602 (2014).
  • 4H. Chen, S. Xiao, L. Yi, D. Yi, and W. Hu, Chin. Opt. Lett. 9, 100606 (2011).
  • 5X. Li, P. Fan, and X. Lei, Chin. Opt. Lett. 8, 884 (2010).
  • 6H. Yin, W. Liang, L. Ma, and L. Qin, Chin. Opt. Lett. 7: 102 (2009).
  • 7M. M. Karbassian and F. K/ippersa, Opt. Switch. Netw. 17: 130 (2012).
  • 8C. C. Yang, J. F. Huang, and T. C. Hsu, IEEE Photon. Technol. Lett. 20, 1664 (2008).
  • 9C. H. Chen, H. Y. Chu, G. C. Yang, C. Y. Chang, and W. C. Kwong, IEEE Trans. Commun. 5, 1247 (2011).
  • 10C. C. Sun, G. C. Yang, C. P. Tu, C. Y. Chang, and W. C. Kwong, IEEE Trans. Commun. 5, 1344 (2010).

同被引文献17

  • 1LI B, LUO F G, YU Zh H, et al. A novel architecture of optical code label generation and recognition for optical packet switching[J]. Frontiers of Optoelectronics in China,2010,3(4):347-353.
  • 2YOO S J B. Optical packet and burst switching technology for future photonic internet[J]. Journal of Lightwave Technology, 2006,24(12):4468-4492.
  • 3ROESE J, BRAUN R P, TOMIZAWA M. Optical transport network evolving with 100 gigabit ethernet[J]. IEEE Optical Communications, 2010,48(3):28-34.
  • 4CHEN F J, LUO J H, LUO F G. Single circularly polarized attosecond pulse generation by spatially inhomogeneous fields from atoms with nonvanishing angular quantum number[J].Optics Communications, 2015,342(1):68-72.
  • 5MORIWAKI O, SAKAMOTO T, OKADA A, et al. Optical packet switching using pattern-matching label processing based on an optical timing pulse generator[C]//200228th European Conference on Optical Communication. New York, USA:IEEE,2002, 2:1-2.
  • 6CHI N, XU L, CHRISTIANSEN L J, et al. Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IP-over-WDM networks[C]//Optical Fiber Communication Conference. New York,USA:IEEE,2003:1248576.
  • 7OKADA A. All-optical packet routing in AWG-based wavelength routing networks using an out-of-band optical label[C]//Optical Fiber Communication Conference.New York,USA:IEEE,2002:213-215.
  • 8KIM H. Long-reach WDM-PON using directly modulated RSOAs and subcarrier multiplexing[C]//Optical Fiber Communication Conference.New York,USA:IEEE, 2012:1-3.
  • 9LEE H J, HERNANDEZ V, TSUI V K, et al. Simple, polarization, independent and dispersion-insensitive SCM signal extraction technique for optical switching systems applications[J]. Electronics Letters,2001, 37(20):1240-1241.
  • 10de HEYN P, LUO J, di LUCENTE S, et al. In-band label extractor based on cascaded si ring resonators enabling 160Gb/s optical packet switching modules[J]. Journal of Lightwave Technology,2014,32(9):1647-1653.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部