期刊文献+

Low-power-pumped high-efficiency frequency doubling at 397.5 nm in a ring cavity 被引量:1

Low-power-pumped high-efficiency frequency doubling at 397.5 nm in a ring cavity
原文传递
导出
摘要 We report low pump power high-efficiency frequency doubling of a fundamental laser beam at 795 nm, corresponding to the rubidium D1 line, to generate UV light at 397.5 nm using a periodically poled KTi OPO4(PPKTP) crystal in a ring cavity. We obtain maximum stable output power of 49 m W for mode-matching pump power of 110 m W, corresponding to 45% raw efficiency(56% net efficiency when considering the output coupling mirror’s 80% transmission). This is the highest efficiency obtained at this wavelength in PPKTP with such low pump power. We obtain 80% beam coupling efficiency to single-mode fiber, demonstrating high beam quality. We report low pump power high-efficiency frequency doubling of a fundamental laser beam at 795 nm, corresponding to the rubidium D1 line, to generate UV light at 397.5 nm using a periodically poled KTi OPO4(PPKTP) crystal in a ring cavity. We obtain maximum stable output power of 49 m W for mode-matching pump power of 110 m W, corresponding to 45% raw efficiency(56% net efficiency when considering the output coupling mirror’s 80% transmission). This is the highest efficiency obtained at this wavelength in PPKTP with such low pump power. We obtain 80% beam coupling efficiency to single-mode fiber, demonstrating high beam quality.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第11期86-89,共4页 中国光学快报(英文版)
基金 supported by the National Fundamental Research Program of China(No.2011CBA00200) the National Natural Science Foundation of China(Nos.11174271,61275115,and 10874171) the Innovation Fund of the Chinese Academy of Sciences
关键词 Frequency doublers Laser beams Pumping (laser) Single mode fibers Frequency doublers Laser beams Pumping (laser) Single mode fibers
  • 相关文献

参考文献19

  • 1E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett. 68, 3020 (1992).
  • 2K. H. Ko, K. H. Lee, H. Park, J. Han, Y. H. Cha, G. Lim, T. S. Kim, and D. Y. Jeong, Chin. Opt. Lett. 10, S21903 (2012).
  • 3S. Zhang, L. Guo, M. Li, L. Zhang, X. Yan, W. Hou, X. Lin, and J. Li, Chin. Opt. Lett. 10, 071401 (2012).
  • 4S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furu- sawa, Appl. Phys. Lett. 89, 061116 (2006).
  • 5Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 (1999).
  • 6F. Y. Wang, B. S. Shi, and G. C. Guo, Opt. Lett. 33: 2191 (2008).
  • 7J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, Phys. Rev. Lett. 100, 093602 (2008).
  • 8H. Zhang, X. M. Jin, J. Yang, H. N. Dai: S. J. Yang, T. M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. S. Pan, Z. S. Yuan, Y. J. Deng, Z. B. Chen, X. H. Bao, S. Chen, B. Zhao, and J.W. Pan, Nat. Photon. 5, 628 (2011).
  • 9B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, Opt. Commun. 281, 3390 (2008).
  • 10X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, Phys. Rev. Lett. 101: 190501 (2008).

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部