期刊文献+

Fabrication of low threshold current monolithic DFB laser with an MMI combiner

Fabrication of low threshold current monolithic DFB laser with an MMI combiner
原文传递
导出
摘要 We fabricate low threshold current monolithic distributed feedback(DFB) laser with a multi-mode interface(MMI) combiner using butt-joint metal-organic chemical vapor deposition technology with different waveguide structures. Multi-layer mask self-aligned photolithography technology is used to form different waveguides in active and passive regions, respectively. The result shows that the laser threshold current is lower than 10 m A, with 50 d B side-mode suppression ratio. We fabricate low threshold current monolithic distributed feedback(DFB) laser with a multi-mode interface(MMI) combiner using butt-joint metal-organic chemical vapor deposition technology with different waveguide structures. Multi-layer mask self-aligned photolithography technology is used to form different waveguides in active and passive regions, respectively. The result shows that the laser threshold current is lower than 10 m A, with 50 d B side-mode suppression ratio.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第11期99-102,共4页 中国光学快报(英文版)
基金 supported by the National 863 Program of China(Nos.2011AA010304 and 2011AA010306) the National 973 Program of China(No.2010CB327603)
关键词 Distributed feedback lasers Metallorganic chemical vapor deposition Organic chemicals ORGANOMETALLICS PHOTOLITHOGRAPHY Waveguides Distributed feedback lasers Metallorganic chemical vapor deposition Organic chemicals Organometallics Photolithography Waveguides
  • 相关文献

参考文献16

  • 1L. Liu, M. Zhang, M. Liu, and X. Zhang, Chin. Opt. Lett. 10, 070608 (2012).
  • 2C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire Jr., P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, and R. Bhat, IEEE J. Sel. Top. Quant. Electron. 3, 584 (1997).
  • 3H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, IEEE J. SeL Top. Quaat. Electron. 13, 1089 (2007).
  • 4B. Pezeshki, A. Mathur, S. Zou, H. S. Jeon, V. Arawal, and P:. L. Lang, Electron. Lett. 36, 788 (2000).
  • 5G. Liu, J. Zhang, X. Wang, B. Zhang, and W. Wang, Chin. J. Lasers 9, 395 (2000).
  • 6C. D. Xu and T. Mei, IEEE J. Quant. Electron. 45, 920 (2009).
  • 7R. Strzoda, G. Ebbinghaus, T. Scherg, and N. Emeis, J. Cryst. Growth 154, 27 (1995).
  • 8J. Y. Zhao, X. Chen, N. Zhou, K. Qian, L. Wang, X. Huang, and W. Liu, Semicond. Sci. Technol. 28, 055015 (2013).
  • 9S. C. Nicholes, M. L. Meaanovic, J. Barton, E. J. Norberg, E. Lively, B. Jevremovie, L. A. Coldren, and D. J. Blumenthal, in Proceedings of IEEE International Conference on Indium Phosphide 8d Related Materials 215 (2009).
  • 10H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, and T. Sasaki, IEEE Photon. Technol. Lett. 15, 7 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部