期刊文献+

三维顶板驱动方腔流的有限元数值模拟 被引量:2

Numerical simulation of 3D lid-driven cubic cavity flow by two kinds of schemes with finite element method
原文传递
导出
摘要 该文基于PETScFEM开源代码,采用两种有限元方法计算不同雷诺数(1000、3200和10000)下的三维顶板驱动方腔流问题,并对计算结果进行比较。一种方法是整体求解NS方程,对流项采用streamline upwind Petrov-Galerkin格式(SUPG)进行稳定,不可压条件采用pressure stabilized Petrov-Galerkin格式(PSPG)进行稳定;另一种方法是分步有限元算法,基于poisson投影对速度和压力进行解耦。两种方法中均采用速度和压力同阶插值。计算结果表明,两种方法均能得到较好的结果,但分步算法对时间步长有一定限制。 Two kinds of numerical schemes with finite element method are applied to the simulation of 3D lid-driven cubic cavity flow at different Reynolds numbers (1000, 3200 and 10000). The calculation is based on the open source codes PETScFEM. One scheme is solving the Navier-Stokes equations monolithicly, while the convection term is stabilized by streamline upwind Petrov-Gaterkin (SUPG) operator, and the incompressible condition is stabilized by pressure stabilized Petrov-Gaterkin (PSPG) operator. The other one is the fractional step method, which decouples the velocity and pressure field by introducing the Poisson projection. Linear equal-order-interpolation velocity-pressure elements are applied to both schemes. The numerical results show that both schemes are suitable for the simulation of the 3D lid-driven cubic cavity flow. However, there is a lower bound for the time step of the fractional step method for stability reasons.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2014年第5期511-523,共13页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金项目(51379125 51411130131 11432009 11272120) 上海高校特聘教授岗位跟踪计划(2013022) 国家重点基础研究发展计划(2013CB036103)~~
关键词 PETScFEM 三维方腔流 有限元 SUPG-PSPG 分步算法 PETScFEM 3D cubic cavity flow finite element method SUPG-PSPG fractional step method
  • 相关文献

参考文献21

  • 1ZIENKIEWICZ O C, GALTAGHER R H, HOOD P. Newtonian and non-newtonian viscous incompressible flow, temperature induced flows, finite element solu- tion[J]. The Mathematics of Finite Elements and Appli- cations II, 1975.
  • 2BROOKS A N, HUGHES T J R. Streamline upwind/ Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J]. Computer Methods in App- lied Mechanics and Engineering, 1982, 32(1-3): 199- 259.
  • 3CHAPELLE D, BATHE K J. The inf-sup test[J]. Com- puter & Structures, 1993, 57(4-5): 322-333.
  • 4HANSBO P, SZEPESSY A. Velocity-pressure stream- line diffusion finite element method for the incompre- ssible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 84(2): 175-192.
  • 5TEZDUYAR T E, MITTAL S, RAY S E, et al. Incom- pressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure ele- ments[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 95(2): 221-242.
  • 6GUERMOND J L, QUARTAPELLE L. On stability and convergence of projection methods based on pressure poisson equation[J]. International Journal for Numerical Methods in Fluids, 1998, 26: 1039-1053.
  • 7CODINA R. Pressure stability in fractional step finite element methods for incompressible flows[J]. Journal of Computational Physics, 2001, 170(1): 12-40.
  • 8PRASAD A K, KOSEFF J R. Reynolds number and end-wall effects on a lid-driven cavity flow[J]. Physics of Fluids, 1989, 1(2): 208.
  • 9JIANG B N, L1N T L, POVINELLI L A. Large scale computation of incompressible viscous flows by least- squares finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 114(3-4): 213-231.
  • 10WONG K L, BAKER A J. A 3D incompressible Navier- Stokes velocity-vorticity weak form finite element algo- rithm[J]. International Journal for Numerical Methods in Fluids, 2002, 38(9): 9-23.

二级参考文献12

  • 1SHUKLA A, SINGH A K, SINGH R A comparative study of finite volume method and finite difference me- thod for convection-diffusion problem[J]. American Journal of Computional and Applied Mathematics, 2011, 1(2): 67-73.
  • 2TEZDUYAR T E, GANJOO D K. Petrov-Galerkin for- mulations with weighting functions dependent upon spatial and temporal discretization: Applications to tran- sient convection-diffusion problems[J]. Computer Me- thods in Applied Mechanics and Engineering, 1986, 59(1): 49-71.
  • 3COCKBURN B, SHU C W. The local discontinuous Galerkin time-dependent method for convection-diffu- sion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6): 2440-2463.
  • 4COCKBURN B, LIN S Y, SHU C W. TVB Runge- Kutta local projection discontinuous Galerkin finite ele- ment method for conservation laws llI: One dimensio- nal systems[J]. Journal of Computational Physics, 1989, 84(1): 90-113.
  • 5COCKBURN B, HOU S, SHU C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case[J]. Mathematics of Computation, 1990, 54(190): 545-581.
  • 6COCKBURN B, GOPALAKRISHNAN J, LAZAROV R. Unified hybridization of discontinuous Oalerkin, mixed and continuous Galerkin methods for second- order elliptic problems[J]. SlAM Journal on Numerical Analysis, 2009, 47(2): 1319-1365.
  • 7NGUYEN N C, PERAIRE J, COCKBURN B. An im- plicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[J]. Journal of Computational Physics, 2009, 228(9): 3232- 3254.
  • 8BASSI F, REBAY S, MARIOTTI G, et al. A high-order accurate discontinuous finite element method for invi- scid and viscous turbomachinery flows[C]. Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics. Technologisch Insti- tuut, Antwerpen, Belgium, 1997, 99-108.
  • 9CASTILLO P, COCKBURN B, PERUGIA I, et al. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[J]. SIAM Journal on Nu- merical Analysis, 2000, 38(5): 1676-1706.
  • 10LIB Q. Discontinuous finite elements in fluid dynamics and heat transfer[M], London, UK: Springer, 2006.

共引文献1

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部