期刊文献+

基于固体酸的纤维素非均相催化糖化的研究进展 被引量:7

Heterogeneous saccharification of cellulose by solid acid
下载PDF
导出
摘要 作为纤维素水解产物,葡萄糖可进一步反应产生果糖、山梨醇、糠醛、乙酰丙酸等重要能源物质和基础平台化合物,因此高效催化纤维素定向转化为葡萄糖对获得高附加值化学品具有重要意义。本文从催化剂的物理化学结构与催化性能之间相互影响关系的角度,综述了磺化固体酸、氢型沸石、金属氧化物、负载金属和杂多酸5种主要非均相催化剂近年来的研究进展及未来的发展方向,分析得出以上催化剂具备易于与水解产物分离、高回收率、稳定的催化活性以及环境友好等明显优势,但仍存在与纤维素接触困难、活性组分容易损失等问题,指出通过引入活性官能团使催化剂兼有纤维素吸附、溶解和水解能力及利用官能团内部作用或固载使催化剂减少组分损失是纤维素非均相催化剂的发展方向。 As the main hydrolysate of cellulose,glucose is able to form a variety of important energy materials and valuable platform chemicals,such as fructose,sorbitol,furfural,and levulinic acid, through isomerization,dehydration,rehydration,hydrogenation,hydrogenolysis or other further reactions. Therefore,it is of great significance for the production of high additional value products by transforming cellulose into glucose,a crucial intermediate,with both high efficiency and excellent selectivity. This article is aimed to review ongoing research progress and to preview the future trends of five predominant types of heterogeneous catalysts,including sulfonated solid acid,H-type zeolite, metal oxide,supported metal and heteropolyacid,in the hydrolytic reaction of cellulose from the perspective of the interaction between the physical and chemical structures of the catalysts and their catalytic activity. The catalysts mentioned above have evident advantages in the ease of separation from products,recyclability,reusability,stability of catalytic activity and environmental influence,but still need improvement in cellulose contact and active components retainment. In the future,it shall be focused on enabling heterogeneous catalysts to absorb,dissolving and hydrolyzing cellulose through functional groups and stabilizing their active components through inner interactions of functional groups or immobilization.
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第11期2947-2955,2981,共10页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(31170551 31200458) 制浆造纸工程国家重点实验开放基金(201349)项目
关键词 生物能源 催化 水解 多相反应 纤维素 固体酸 葡萄糖 bioenergy catalyst hydrolysis multiphase reaction cellulose solid acid glucose
  • 相关文献

参考文献42

  • 1Huang Y B, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts[J]. Green Chemistry, 2013, 15: 1095-1111.
  • 2Lanzafame P, Temi D M, Perathoner S, et al. Direct conversion of cellulose to glucose and valuable intermediates in mild reaction conditions over solid acid catalysts[J]. Catalysis Today, 2012, 179: 178-184.
  • 3Zhang Q H, Benoit M, Vigier K D O, et al. Pretreatment of microcrystalline cellulose by ultrasounds.- Effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose[J].Green Chemistry, 2013, 15: 963-969.
  • 4Hara M, Yoshida T, Takagaki A, et al. A carbon material as a strong protonic acid[J]. Angewandte Chemie International Edition, 2004, 43: 2955-2958.
  • 5Shimizu K, Satsuma A. Toward a rational control of solid acid catalysis for green synthesis and biomass conversion[J]. Energy EnvironmentalScience, 2011, 4; 3140-3153.
  • 6Hara M. Biomass conversion by a solid acid catalyst[J]. Energy Environmental Science, 2010, 3: 601-607.
  • 7Suganuma S, Nakajima K, Kitano M, et al. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups[J]. Journal of the American Chemical Society, 2008, 130: 12787-12793.
  • 8Jiang Y J, Li X T, Cao Q, et al. Acid functionalized, highly dispersed carbonaceous spheres: An effective solid acid for hydrolysis of polysaccharides[J]. Journal of Nanoparticle Research, 2011, 13:463-469.
  • 9Liu M, Jia S Y, Gong Y Y, et al. Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid[J]. Industrial and Engineering Chemistry Research, 2013, 52: 8167-8173.
  • 10Shen S G, Wang C Y, Cai B, et al. Heterogeneous hydrolysis of cellulose into glucose over phenolic residue-derived solid acid[J]. Fuel, 2013, 113: 644-649.

二级参考文献26

  • 1沈彬,李游,王志飞,何农跃.磁性纳米颗粒负载钯催化剂对Heck反应的催化活性[J].催化学报,2007,28(6):509-513. 被引量:11
  • 2何北海,林鹿,孙润仓,孙勇.木质纤维素化学水解产生可发酵糖研究[J].化学进展,2007,19(7):1141-1146. 被引量:49
  • 3Mok,W.S.;Antal,M.J.;Varhegyi,G.Ind.Eng.Chem.Res.,1992,31:94.
  • 4Kim,J.S.;Lee,Y.Y.;Torget,R.W.Appl.Biochem.Biotechnol.,2001,92:331.
  • 5庄新妹 王树荣 骆仲泱 安宏 岑可法.太阳能学报,2006,27:519-519.
  • 6Sasaki,M.;Fang,Z.:Fukushima,Y.;Adschiri,T.;Arai,K.Ind.Eng.Chem.Res.,2000,39:2883.
  • 7Sasaki,M.;Kabyemela,B.;Malaluan,R.;Hirose,S.;Takeda,N.;Adschiri,T.;Arai,K.J.Supercrit Fluids,1998,13:261.
  • 8Fukuoka,A.;Dhepe,P.L.Angew.Chem.Int.Edit.,2006,45:5161.
  • 9Luo,C.;Wang,S.;Liu,H.C.Angew.Chem.Int.Edit.,2007,46:7636.
  • 10Deng,W.P.;Tan,X.S.;Fang,W.H.;Zhang,Q.H.;Wang,Y.Catal.Lett.,2009,133:167.

共引文献37

同被引文献63

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部