期刊文献+

亚循环的Capable p-群 被引量:6

The Metacyclic Capable p-Groups
原文传递
导出
摘要 给定了一个群G,若存在另外的一个群H,能够使得H/Z(H)≌G,则称G是capable群.对cable群进行研究在p-群分类问题的研究中起着相当重要的作用.完全决定了亚循环的capable p-群G. A group G is said to be capable if and only if G is isomorphic to H/Z(H) for some group H, where Z(H) is the center of H. The question of which p-groups are capable is interesting and plays an important role in their classification. This paper determines completely the metacyclic capable p-groups.
作者 李志秀
出处 《数学的实践与认识》 CSCD 北大核心 2014年第22期232-235,共4页 Mathematics in Practice and Theory
关键词 Capable群 亚循环p-群 capable groups metacyclic p-groups.
  • 相关文献

参考文献4

  • 1李志秀.一些特殊的capable群[J].晋中学院学报,2010,27(3):27-28. 被引量:5
  • 2Newman M F, and Xu Mingyao. Metacyclic groups of prime-power order(Reserch annoucement)[J] Adv in Math (Beijing), 1988(17): 106-107.
  • 3Newman M F, and Xu Mingyao. Metacyclic groups of prime-power order[J]. Preprint, 1987.
  • 4Mingyao Xu, and Qinhai Zhang. Classification of metacyclic 2- groups[J]. Algebra Colluquim, 2006, 13(6): 25-34.

二级参考文献2

  • 1R.Baer.Groups with preassigned central and central quotient group[J].Trans.Amer.Math.Soc.,1938,(44):387-412.
  • 2F.Rudolf Beyl.On groups occurring as center factor groups[J].Journal of algebra.,1979,(61):161-177.

共引文献4

同被引文献16

  • 1ZHANG Qinhai SONG Qiangwei XU Mingyao.A classification of some regular p-groups and its applications[J].Science China Mathematics,2006,49(3):366-386. 被引量:11
  • 2Newman M F, and Xu Mingyao. Metacyclic groups of prime-power order(Reserch annoucement) [J].Adv in Math (Beijing), 1988, 17: 106-107.
  • 3Newman M F, and Xu Mingyao. Metacyclic groups of prime-power order[M]. Preprint, 1987.
  • 4Mingyao Xu and Qinhai Zhang. Classification of metacyclic 2-groups[J]. Algebra Colluquim, 2006 13(1): 25-34.
  • 5BAER R.Groups with preassigned central and qentral guotient group[J].Trans Amer Math Soc,1938,44(3):381-412.
  • 6SHAHRIAR S. On normal subgroups of capable groups[J]. Arch Math,1987(48):193-198.
  • 7HERMANN H. Nilpotent groups of class two that can appear as central quotient groups[J]. Bend Sem Mat Univ Padova,1996(54): 347-352.
  • 8BLACKBURN N. Generalizations of certain elementary theorems on p-groups[J]. Proc London Math Soc, 1961, 11 (3) : 1-22.
  • 9M.Bacon and L.C.Kappe, On capable p-group of nilpotency class two[J], illinois Journal of Mathe- matics Volume, 2003(47): 49-62.
  • 10Magidin.Arturo, Capability of nilpotent products of cyclic groups[J]. J. Grpup Theory, 2005, 8(4): 431-452.

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部