期刊文献+

微生物电化学系统电子中介体 被引量:5

Electron Transfer Mediators in Microbial Electrochemical Systems
原文传递
导出
摘要 电化学活性微生物与电极之间的胞外电子传递在微生物电化学系统(microbial electrochemical systems,MESs)产能、生物修复等功能的实现中起着关键作用。目前,研究者对微生物胞外电子传递机理了解有限,限制了MESs的应用。相比于需要微生物功能蛋白与电极接触才能发生的直接电子传递,间接电子传递可通过具有可逆氧化还原活性的电子中介体(electron transfer mediators,ETMs)实现电子的传递,从而有效提高微生物胞外电子传递效率。在间接电子转移过程中,ETMs起着中间电子受体和中间电子供体的作用,即被还原后可将电子传递给最终电子受体并被重新还原;理论上每个ETMs分子可以循环数千次,因此ETMs对特定环境下终端氧化物(如铁离子)的循环有着极其显著的作用。本文系统总结了MESs中ETMs及间接电子传递机制近年来的研究进展,并且在此基础上探讨了ETMs在MESs中的研究趋势,以期推动MESs在生物修复、能源生产方面的实际应用。 Extracellular electron transfer( EET) between electrochemically active microorganisms and electrodes plays a key role in microbial electrochemical systems( M ESs) functioning of energy generation,bioremediation,etc. At present,researchers have a very limited understanding of the mechanism of EET,which is one of the major bottlenecks in application of MESs. Compared with direct electron transfer w hich requires a direct contact between microbial functional proteins and electrode,mediated electron transfer use electron transfer mediators( ETMs)which have reversible redox activities accompanies by high-efficiency EET for transporting electrons. ETM s serve as the middle electron acceptor,once reduced,can transfer electrons to terminal electron acceptor where upon it becomes re-oxidized. In principle,ETMs molecules could cycle thousands of times,thus,have a significant effect on the turnover of the terminal oxidant( e. g. iron) in certain circumstances. This review summarizes the recent advances of EET mechanisms w ith focus on mediated EET in M ESs. Furthermore,w e have highlighted the research trends of ETM s in MES,which will promote the practical applications of MESs in bioremediation,energy generation and so on.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2014年第11期1859-1866,共8页 Progress in Chemistry
关键词 微生物电化学系统 胞外电子传递 间接电子传递 电子中介体 吩嗪 核黄素 microbial electrochemical systems extracellular electron transfer mediated electron transfer electron transfer mediators phenazines flavins
  • 相关文献

参考文献107

  • 1Bond D R, Hohnes D E, Tender L M, Lovley D R. Science, 2002, 295: 483.
  • 2Lovley D R. Nat. Rev. Microbiol. , 2006, 4: 797.
  • 3Antonopoulou G, Stamatelatou K, Bebelis S, Lyberatos G. Biochem. Eng. J., 2010, 50: 10.
  • 4Liu Z D, Li H R. Biochem. Eng. J. , 2007, 36: 209.
  • 5Lovley D R. Curr. Opin. Biotechnol. , 2008, 19: 564.
  • 6Hosseini M G, Ahadzadeh I. J. Power Sources, 2012, 220: 292.
  • 7Brutinel E D, Gralnick J A. Appl. Microbiol. Biotechnol., 2012, 93: 41.
  • 8肖勇(XiaoY),吴松(WuS),杨朝晖(YangZH),郑越(ZhengY),赵峰(ZhaoF).化学进展,2013,25:1771.
  • 9Deng L, Li F, Zhou S, Huang D, Ni J. Chin. Sci. Bull. , 201.0, 55: 99.
  • 10Velasquez-Orta S B, Head I M, Curtis T P, Scott K, Lloyd J R, yon Canstein H. Appl. Microbiol. Biotechnol., 2010, 85: 1373.

同被引文献42

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部