摘要
在Hilbert空间中使用迭代格式xn+1=(1-αn)(δTxn+(1-δ)xn),n≥0来研究严格伪压缩映象T的最小范数不动点问题,采用新方法证明当参数满足适当条件时,序列x{n}强收敛至严格伪压缩映象T的最小范数不动点,同时该不动点也是某变分不等式的解.其结果推广与改进了一些近代相关结果.
In this paper,we deal with an iterative algorithm for solving the minimum-norm fixed point problems of strict pseudo-contraction in Hilbert spaces by xn+1 =(1-αn)(δTxn +(1-δ)xn),where T:C →Cis a k-strict pseudo-contraction.Under certain approximate conditions,the sequence x{n}converges strongly to the minimum-norm fixed point of strict pseudo-contraction T,which is also a solution to a variational inequality.The results here extend and improve some recent related results.
出处
《嘉兴学院学报》
2014年第6期58-63,共6页
Journal of Jiaxing University
基金
浙江省教育厅科研项目(Y201330110)
关键词
最小范数不动点
严格伪压缩映象
变分不等式
度量投影
迭代算法
minimum-norm fixed point
strict pseudo-contraction
variational inequality
metric projection
iterative algorithm