期刊文献+

迭代算法逼近严格伪压缩映象最小范数不动点与变分不等式解

An Iterative Algorithm for Minimum-norm Fixed Points of Strict Pseudo-contraction and Solutions to a Variational Inequality
下载PDF
导出
摘要 在Hilbert空间中使用迭代格式xn+1=(1-αn)(δTxn+(1-δ)xn),n≥0来研究严格伪压缩映象T的最小范数不动点问题,采用新方法证明当参数满足适当条件时,序列x{n}强收敛至严格伪压缩映象T的最小范数不动点,同时该不动点也是某变分不等式的解.其结果推广与改进了一些近代相关结果. In this paper,we deal with an iterative algorithm for solving the minimum-norm fixed point problems of strict pseudo-contraction in Hilbert spaces by xn+1 =(1-αn)(δTxn +(1-δ)xn),where T:C →Cis a k-strict pseudo-contraction.Under certain approximate conditions,the sequence x{n}converges strongly to the minimum-norm fixed point of strict pseudo-contraction T,which is also a solution to a variational inequality.The results here extend and improve some recent related results.
出处 《嘉兴学院学报》 2014年第6期58-63,共6页 Journal of Jiaxing University
基金 浙江省教育厅科研项目(Y201330110)
关键词 最小范数不动点 严格伪压缩映象 变分不等式 度量投影 迭代算法 minimum-norm fixed point strict pseudo-contraction variational inequality metric projection iterative algorithm
  • 相关文献

参考文献18

  • 1BROWDER F E, PETERSHYN. Contraction of fixed points of nonlinear mappings in Hilbert spaces [J]. Journal of Mathematical Analysis and Applications, 1967 (20): 197-228.
  • 2XU W, WANG Y H. A general iterative algorithm with strongly Abstract and Applied Analysis, 2013, article ID: 757986, 6pages.
  • 3FERREIRA, PJSG. The existence and uniqueness of the minimum [J]. Signal Process, 1996, 55 (1): 137-139.
  • 4MOUDAF A. Viscosity approximation methods for fixed-points problem [J]. Journal of Mathematical Analysis and Appli- cations, 2000, 241 (1): 46-55.
  • 5XU H K. Viscosity approximation methods for nonexpansive mappings [-J 1. Journal of Mathematical Analysis and Applications, 2000, 298 (1) : 279-291.
  • 6TIAN M. A general iterative algorithm for nonexpansive mappings in Hilbert spaces [J]. Nonlinear Analysis: Theory Methods and Application. A, 2010, 73 (3): 689-694.
  • 7CENG L-C, GUU S-M, YAO J C. A general composite iterative algorithm for nonexpansive mappings in Hilbert spaces [J]. Computer and Mathematical with Applications, 2011, 61 (9): 2447-2455.
  • 8XU W, WANG Y H. Strong convergence of the iterative methods for hierarchical fixed point problems of an infinite family of strictly nonself pseudocontractions [J]. Abstract and applied analysis, 2013, article ID: 757986, 11 pages.
  • 9HALPERN B, Fixed points of nonexpansive mappings. [J]. ]3ull. Am. Math. Soc., 1967 (73): 957-961.
  • 10YAO Y H, XU H K. Iterative methods for finding inimum-norm fixed points of nonexpansive mappings with applications [J]. Optim, 2011, 60 (6): 645-658.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部