期刊文献+

带两个趋化参数的趋化性模型的非常数平衡解的存在性 被引量:2

On Existence of Non-constant Steady States of a Chemotaxis Model with Two Sensitive Coefficients
下载PDF
导出
摘要 研究带两个趋化性参数的趋化性模型的平衡解的存在性.利用局部分岔理论得到该趋化模型存在无穷多个非常数正平衡解. Chemotaxis is the oriented movement of cells in response to the concentration gradient of chemi ‐cal substances in their environment .The existence of the steady solutions of a chemotaxis model with two sensitive coefficients has mainly been studied in this paper .By applying local bifurcation theory to this model ,it is concluded that there exist infinite non‐constant steady states .
作者 徐茜 赵烨
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第11期11-16,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 北京市自然科学基金资助项目(1132003) 北京市教委科技计划项目(KZ201310028030 KM201210017008)
关键词 趋化性 平衡解 局部分岔 chemotaxis steady state local bifurcation
  • 相关文献

参考文献10

  • 1KELLER E, SEGEL L. Initiation of Slime Mold Aggregation Viewed as an Instability [J]. J Theoret Biol, 1970, 26: 399-415.
  • 2MIMURA M, TSUJIKAWA T. Aggregating Pattern Dynamics in a Chemotaxis Model Including Growth [J]. Physica A, 1996, 230. 499-543.
  • 3WANG X, XU Q. Spiky and Transition Layer Steady States of Chemotaxis Systems via Global Bifurcation and Helly's Compactness Theorem[J]. J Math Biol, 2013, 66: 1241- 1266.
  • 4WINKLER M. Absence of Collapse in a Parabolic Chemotaxis System with Signal Dependent Sensitivity [J]. Mathema- tische Nachrichten, 2010, 283: 1664-1673.
  • 5罗万成.具时滞Logistic型竞争模型的全局吸引性[J].西南师范大学学报(自然科学版),2001,26(3):237-242. 被引量:4
  • 6周军.一类具有修正的Leslie-Gower功能函数的捕食-食饵模型的全局渐近稳定性[J].西南大学学报(自然科学版),2014,36(7):53-57. 被引量:4
  • 7叶志勇,豆中丽,夏书银,马文文.具有离散-时间捕食-食饵模型的稳定性和Neimark-Sacker分支[J].西南大学学报(自然科学版),2013,35(9):80-87. 被引量:1
  • 8HILLEN T, PAINTER K. Volume Filling and Quorum Sensing in Models for Chemosensitive Movement [J]. Canadian Applied Mathematics Quarterly, 2002, 10 : 501- 543.
  • 9CRANDALL M, RABLNOWITZ P. Bifurcation from Simple Eigenvalues [J]. J Functional Analysis, 1971, 8: 321- 340.
  • 10SHI J, WANG X. On the Global Bifurcation for Quasilinear Elliptic Systems on Bounded Domains [J]. J Diff Eqs, 2009, 246: 2788-2812.

二级参考文献16

  • 1马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 2LaSalle J P.动力系统的稳定性[M].陆征一,译.成都:四川科学技术出版社,2002.
  • 3Lu Zhengyi,J Math Biol,1999年,39卷,269页
  • 4Wang Wendi,Nonlinear Anal,1999年,35卷,1019页
  • 5Wang Wendi,J Math Anal Appl,1991年,158卷,256页
  • 6叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1994.108,205.
  • 7LIU Xiao-li, XIAO Dong-mei. Complex Dynamic Behaviors of a Discrete Time Predator Prey System tons and Fractals, 2007, 32(1): 80-94.
  • 8XIAO Yan-ni, CHEN Lan-sun. Modeling and Analysis of a Predator-Prey Model with Disease in the Prey [J]. Mathe matieal Biosciences, 2001, 171(1) : 59-82.
  • 9BRAUER F, CASTILLO-CHAVEZ C. Mayhematical Models in Population Biology and Epidemiology [M]. New York Spring-Verlag, 2001.
  • 10ROSENZWEIG M L, MACARTHUR R H. Graphical Representation and Stability Conditions of Predator-Prey Interac tions [J]. The American Naturalist, 1963, 97(895) : 209-223.

共引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部