期刊文献+

幂赋范下偏正态分布极值的收敛速度

On Convergence Rate of Extreme of Skew Normal Distribution under Power Normalization
下载PDF
导出
摘要 令{Xn,n≥1}是独立同分布随机变量序列并且每个变量均服从偏正态分布.再令Mn=max{Xk,1≤k≤n}表示{Xn,n≥1}的部分最大值,得到了幂赋范下最大值分布的渐近分布和赋范常数以及幂赋范下相应的逐点收敛速度. Let {X n ,n ≥ 1} be independent and identically distributed random variables with each following skew normal distribution .Let Mn = {X k ,1 ≤ k ≤ n} denote the partial maximum of {Xn ,n≥ 1} .Liao et al . (2014) considered the convergence rate of the distribution of the maxima for random variables obeying the skew normal distribution under linear normalization .In this paper ,the asymptotic distribution of the max‐imum has been obtained under power normalization and normalizing constants as well as the associated pointwise convergence rate under power normalization .
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第11期17-21,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 贵州省科技基金(黔科合J字LKZS[2014]22号 黔科合J字LKZS[2014]29号)
关键词 渐近分布 最大值 收敛速度 偏正态分布 幂赋范 asymptotic distribution maximum rate of convergence skew normal distribution power nor-malization
  • 相关文献

参考文献15

  • 1AZZALINI A. A Class of Distributions Which Includes the Normal Ones [J]. Scandinavian Journal of Statistics, 1985, 12(2) : 171-178.
  • 2HALL P. On the Rate of Convergence of Normal Extremes [J]. Journal of Applied Probability, 1979, 16 (2): 433-439.
  • 3PENG Z, NADARAJAH S, LIN F. Convergence Rate of Extremes for the General Error Distribution [J]. Journal of Applied Probability, 2010, 47(3) : 668-679.
  • 4CHEN S, HUANG J. Rates of Convergence of Extreme for Asymmetric Normal Distribution[J]. Statistics and Proba- bility Letters, 2014, 84: 158-168.
  • 5黄建文,陈守全,李文兴.广义logistic分布的收敛速度(英文)[J].四川大学学报(自然科学版),2014,51(1):47-52. 被引量:5
  • 6黄建文,陈守全,羊豪.广义误差样本最大值的收敛速度[J].西南师范大学学报(自然科学版),2014,39(3):49-52. 被引量:1
  • 7刘姣姣,陈守全.广义指数分布随机变量序列最大值的收敛速度[J].西南大学学报(自然科学版),2013,35(5):89-92. 被引量:5
  • 8LIAO X, PENG Z, NADARAJAH S, et al. Rates of Convergence of Extremes from Skew-normal Samples[J]. Statis- tics and Probability Letters, 2014, 84:40-47.
  • 9CHEN S, WANG C, ZHANG G. Rates of Convergence of Extreme for General Error Distribution under Power Normali zation [J]. Statistics and Probability Letters, 2012, 82: 385-395.
  • 10CHEN S, FENG B. Rates of Convergence of Extreme for STSD under Power Normalization [J/OL]. Journal of the Ko- rean Statistical Society, 2014, http. //dx. doi. org/10. 1016/j. jkss. 2014. 02. 001.

二级参考文献25

  • 1毛瑞华,李竹渝.随机单位根过程[J].四川大学学报(自然科学版),2006,43(6):1192-1196. 被引量:1
  • 2刘珂,彭作祥.条件矩的收敛速度[J].西南大学学报(自然科学版),2007,29(1):5-8. 被引量:4
  • 3[1]Zuoxiang Peng S.Nadarajah,Miaomiao Liu.Conditions Based on Conditional Moments for Max-Stable Limit Laws[J].Preprint,2006.
  • 4[2]Geluk J L.On the Domain of Attraction of exp(exp(-x))[J].Stat Prob Letters,1996,31(2):91-95.
  • 5[3]Haan L D,Resnick S.Second-Order Regular Variation and Rates of Convergence in Extreme-Value Theory[J].Annals of Probab,1996,24:97-124.
  • 6[4]Dekkers A L,Haan L D.On the Estimation of the Extreme-Value Index and Large Quantile Estimation[J].Ann Statist,1989,17(4):1795-1832.
  • 7[5]Haan L D.Von Mises-Type Conditions in Second Order Regular Variation[J].Journal of Mathematical Analysis and Applications,1996,197(2):400-410.
  • 8LEADBETTER M R, LINDGREN G, ROOTZEN H. Extremes and Related Properties of Random Sequences and Processes[M]. Berlin: Springer, 1983: 3-5.
  • 9RESNICK S I. Extreme Values, Regular Variation and Point Processes[M]. Berlin: Springer, 1987: 38-54.
  • 10PENG Z, WENG Z, NADARAJAH S. Rates of Convergence of Extremes for Mixed Exponential Distributions[J]. Mathematics and Computer in Simulation, 2010, 81(1): 92-99.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部