摘要
令{Xn,n≥1}是独立同分布随机变量序列并且每个变量均服从偏正态分布.再令Mn=max{Xk,1≤k≤n}表示{Xn,n≥1}的部分最大值,得到了幂赋范下最大值分布的渐近分布和赋范常数以及幂赋范下相应的逐点收敛速度.
Let {X n ,n ≥ 1} be independent and identically distributed random variables with each following skew normal distribution .Let Mn = {X k ,1 ≤ k ≤ n} denote the partial maximum of {Xn ,n≥ 1} .Liao et al . (2014) considered the convergence rate of the distribution of the maxima for random variables obeying the skew normal distribution under linear normalization .In this paper ,the asymptotic distribution of the max‐imum has been obtained under power normalization and normalizing constants as well as the associated pointwise convergence rate under power normalization .
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第11期17-21,共5页
Journal of Southwest China Normal University(Natural Science Edition)
基金
贵州省科技基金(黔科合J字LKZS[2014]22号
黔科合J字LKZS[2014]29号)
关键词
渐近分布
最大值
收敛速度
偏正态分布
幂赋范
asymptotic distribution
maximum
rate of convergence
skew normal distribution
power nor-malization