期刊文献+

面向大样本数据的核化极速神经网络 被引量:6

Large-Scale Kernel Extreme Learning Machine
下载PDF
导出
摘要 核化极速神经网络KELM(Kernel Extreme Learning Machine)将ELM(Extreme Learning Machine)推广到核方法框架下,取得了更好的稳定性和泛化性.但KELM的训练时间O(n2 m+n3+ns)≈O(n3),以样本数n的3次幂急剧膨胀(n为样本数,m为特征维度,s为输出节点个数),不适合处理大样本数据(n20 000为基准).为此作者提出一种KELM加速计算框架,并在该框架下结合Nystrm近似低秩分解实现一种快速算法NKELM(Nystrm Kernel Extreme Learning Machine).NKELM的训练时间O(nmL+mL2+L3+nLs)≈O(n),只是n的一次幂(L为隐含层节点数,通常Ln),远远低于KELM的训练时间,适合处理大样本数据.实验表明,NKELM在大样本数据上具有极快的学习速度,同时产生良好的泛化性能. Kernel Extreme Learning Machine(KELM)generalizes basic Extreme Learning Machine(ELM)to the kernel-based framework,and produces better generalization than ELM.But its time O(n2 m+n3+ns)≈O(n3)(where n is the number of training sets,mis the number of dimensions and s is the number of output nodes)increases polynomial with respect to the data size,and thus unsuitable for large-scale problems(n=20 000).Here we will propose an accelerated framework for KELM,and then implement an effective algorithm named Nystrm Kernel Extreme Learning Machine(NKELM)based on Nystrm low-rank decomposition under the framework.The time cost of NKELM O(nmL+mL2+L3+nLs)≈O(n)(Lis the number of hidden nodes,and Lnin common cases)is significantly lower than KELM,and very suitable for large-scale problems.The experimental results on large-scale datasets show that NKELM can produce good generalization performance with fast learning speed.
出处 《计算机学报》 EI CSCD 北大核心 2014年第11期2235-2246,共12页 Chinese Journal of Computers
基金 国家自然科学基金(61100166 61202184) 国家自然科学基金重点与重大项目(91118005 91218301) 创新群体项目(61221063) 陕西省科技新星项目(2013KJXX-29) 陕西省自然科学基金(2012JM8022) 陕西省普通高等学校重点学科专项资金建设项目(2012XKJS-A016) 西安邮电大学西邮新星团队项目(2014XYXX-03)资助~~
关键词 极速神经网络 随机采样 低秩分解 核方法 extreme learning machine Nystrom sampling low rank decomposition kernel method
  • 相关文献

参考文献1

二级参考文献17

  • 1Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2): 251-257.
  • 2Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6) : 861-867.
  • 3Huang G-B, Babri H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 1998, 9(1): 224-229.
  • 4Huang G-B. Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Transactions on Neural Networks, 2003, 14(2): 274-281.
  • 5Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70 (1-3): 489-501.
  • 6Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer, 1995.
  • 7Rousseeuw P J, Leroy A. Robust Regression and Outlier Detection. New York: Wiley, 1987.
  • 8Rumelhart D E, McClelland J L. Parallel Distributed Processing. Cambridge.. MIT Press, 1986, 1(2): 125-187.
  • 9Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge: Cambridge University Press, 2000.
  • 10Tamura S, Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Transactions on Neural Networks, 1997, 8(2): 251-255.

共引文献161

同被引文献31

引证文献6

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部