期刊文献+

同质球形邻域投影

Projection of Isotropic Hyper Sphere Neighborhood
下载PDF
导出
摘要 在有监督学习模式下,当样本数量在类与类之间的分布具有较大的不平衡现象时,一些传统算法如LDA的性能会受到很大影响.在iid条件下,可以认为每类数据具有独特性,且类与类之间彼此独立.基于此,提出了同质球形邻域算法IHSN(Isotropic Hyper Sphere Neighborhood).通过在Rn-1空间中构建n个同质的正则单纯形,作为样本在嵌入空间中的同质球形邻域,利用带约束的最小二乘回归法可求得数据空间与嵌入空间的映射函数.所提出的IHSN算法有两种实现形式:基于流形学习的IHSN-ML、基于KL散度的IHSN-KL.IHSN-ML具有闭式解,速度快;IHSN-KL可解释性好,精度更高.在IRIS和PIE-CMU数据集上的实验,验证了所提算法的有效性. In supervised learning,the performance of LDA would degrade dramatically when the samples between classes are seriously unbalanced.The samples of each class are unique and independent under the assumption of iid conditions.In this paper,IHSN(Isotropic Hyper Sphere Neighborhood)is proposed to tackle those problems.In Rn-1 feature space,nregular simplex are constructed to serve as the isotropic hyper sphere neighborhoods.A linear transformation can be learned by least square regression to model the relationship between data space and feature space.Two methods are presented to realize IHSN.One is IHSN-ML,which is based on manifold learning;the other is IHSN-KL,which is based on Kullback-Leibler divergence.IHSN-ML has closed solution and fast computation.Meanwhile,IHSN-KL is more accurate both in classification and explanation.Experimental results on IRIS and PIE-CMU show competence of the proposed methods.
出处 《计算机学报》 EI CSCD 北大核心 2014年第11期2256-2261,共6页 Chinese Journal of Computers
基金 国家自然科学基金(61170109 61272007 61100119) 浙江省自然科学基金(Y14F030022 LY12F02009 LY13F020015) 浙江省科技厅项目(2012C21021)资助~~
关键词 流形学习 内蕴结构 降维 有监督学习 manifold learning intrinsic structure dimensionality reduction supervised learning
  • 相关文献

参考文献25

  • 1Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 2He X, Yan S, Hu Y X, Niyogi P, Zhang H. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces , Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997. 19(7): 711-720.
  • 4杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 5Cevikalp H, Neamtu M, Wilkes M. Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(1): 4-13.
  • 6Howland P, Park H. Generalizing discriminate analysis using the generalized singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (8): 995-1006.
  • 7Yu Hua , Yang Jie. A. direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recognition, 2001, 34(2001): 2067-2070.
  • 8Yang Jian, Chu De-Lin, Zhang Lei. Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(7): 1023-1035.
  • 9Zhang Nan, Yang Jian. Low-rank representation based discriminative projection for robust feature extraction. Neurocomputing , 2013, 11(2): 13-20.
  • 10Gao Quan-Xue , Liu Jing-Iing , Zhang Hai-Jun , et al. Enhanced fisher Discriminant criterion for image classification. Pattern Recognition, 2012, 45(10): 3717-3724.

二级参考文献31

  • 1[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 3[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 4[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 5[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 6[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 7[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839
  • 8[8]Duchene J, Leclercq S. An optimal Transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(6): 978~983
  • 9[9]Zhong Jin, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001,33(7): 1405~1416
  • 10[10]Yang Jian, Yang Jing-Yu, Jin Zhong. An apporach of optimal discriminatory feature extraction and its application in image recognition. Journal of Computer Research and Development, 2001,38(11):1331~1336(in Chinese)

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部