期刊文献+

两种求解非线性方程组的5阶迭代方法

Two Variants of Iterative Methods for Solving Systems of Nonlinear Equations with Fifth-order Convergence
原文传递
导出
摘要 提出了两种求解非线性方程组的迭代方法,证明了它们具有5阶收敛性,并给出了3个数值实验,与其他几个方法作数值比较,结果表明本方法是有效的. Two variants of iterative methods for solving systems of nonlinear equations with fifth-order convergence is developed. The proposed methods are of the convergence of fifth order. Some numerical comparisons are made with several other existing methods to illustrate the efficiency and the performance of the newly developed method confirms the theoretical results.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期9-14,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11071041) 福建省自然科学基金资助项目(2013J01006)
关键词 非线性方程组 迭代方法 收敛阶 数值比较 systems of nonlinear equations iterative method convergence order numericalcomparison
  • 相关文献

参考文献12

  • 1Golbabai A, Javidi M. A new family of iterative methods for solving system of nonlinear algebri cequations E J ]- Appl Math Comput, 2007 (190) : 1717 - 1722.
  • 2Ortega J M, Rheinboh W C. Iterative solution of nonlinear equations in several variables [ M ]. New York : Academic Press, 1970.
  • 3Frontini M, Sormani E. Third-order methods from quadrature formulae for solving systems of nonlinear equations [ J ], Appl Math Comput, 2004 (149) : 771 -782.
  • 4Noor M A. Fifth-order convergent iterative method for solving nonlinear equations using quadrature formula [ J ]. J Math Control Sci Appl, 2007, 1 : 241 -249.
  • 5Darvishi M T, Barati A. A fourth-order method from quadrature formulae to solve systems of nonlinear equations [ J ]. Appl Math Comput, 2007 (188) : 257 -261.
  • 6Darvishi M T, Barati A. A third-order Newton-type method to solv esystems of nonlinear equations [ J ]. Appl Math Com- put, 2007 (187): 630-635.
  • 7DarvishiM T, Barati A. Super cubic iterative methods to solve systems of nonlinear equations [ J ]. Appl Math Comput, 2007 (188) : 1678 -1685.
  • 8Babajee D K R, Dauhoo M Z, Darvishi M T, et al. A note on the local convergence of iterative methods based on ado- mian decomposition method and 3-node quadrature rule [J]. Appl Math Comput, 2008 (200) : 452 -458.
  • 9Noor M A, Waseem M. Some iterative methods for solving a system of nonlinear equations [ J ]. Appl Math Comput, 2009, 57:101 - 106.
  • 10Khirallah M Q, Hafiz M A. Novel three order methods for solving a system of nonlinear equations [ J ]. Bulletin of Soci- ety for Mathematical Services and Standards, 2012, 1 (2) : 1 - 14.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部