摘要
考虑具乘性噪声的耗散Kd V型方程在一维有界区域上的长时间行为.通过变换将该方程化为不含白噪声的随机Kd V型方程,通过讨论新方程所确定动力系统的吸收性与渐近紧性,从而证明了原方程所确定动力系统随机吸引子的存在性.
This paper considers the long time behavior of the dissipative Kd V equation on one dimension dounded domain D. A process is introduced, which enables us to transform this equation into a stochastic equation without white noise. Then this paper studies the absorbent and asymptotic compactness of the dynamical system generated by the new equation. It proves the existence of random attractor for the dissipative Kd V equation finally.
出处
《西南民族大学学报(自然科学版)》
CAS
2014年第6期900-904,共5页
Journal of Southwest Minzu University(Natural Science Edition)
基金
国家自然科学基金面上项目(71273214)
中央高校基本科研业务费创新项目(SWJTU11CX154)
关键词
随机吸引子
乘性白噪声
耗散Kd
V方程
随机半径
随机吸收集
random attractor
multiplicative white noise
dissipative Kd V equation
random ridua
random absorting set