期刊文献+

具乘性白噪声耗散KdV型方程的随机吸引子 被引量:1

Random attractor for dissipative Kd V equation with multiplicative white noise
下载PDF
导出
摘要 考虑具乘性噪声的耗散Kd V型方程在一维有界区域上的长时间行为.通过变换将该方程化为不含白噪声的随机Kd V型方程,通过讨论新方程所确定动力系统的吸收性与渐近紧性,从而证明了原方程所确定动力系统随机吸引子的存在性. This paper considers the long time behavior of the dissipative Kd V equation on one dimension dounded domain D. A process is introduced, which enables us to transform this equation into a stochastic equation without white noise. Then this paper studies the absorbent and asymptotic compactness of the dynamical system generated by the new equation. It proves the existence of random attractor for the dissipative Kd V equation finally.
出处 《西南民族大学学报(自然科学版)》 CAS 2014年第6期900-904,共5页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金面上项目(71273214) 中央高校基本科研业务费创新项目(SWJTU11CX154)
关键词 随机吸引子 乘性白噪声 耗散Kd V方程 随机半径 随机吸收集 random attractor multiplicative white noise dissipative Kd V equation random ridua random absorting set
  • 相关文献

参考文献11

  • 1TEMAM R.Infinite Dimensional Systems in Mechanics and Physics[M].New York:Springer Ve-rlag,1988.
  • 2杜先云,杜先云,戴正德.耗散KDV型方程Cauchy问题的整体吸引子[J].数学物理学报(A辑),2000,20(3):289-295. 被引量:9
  • 3ZHAND ZAIYUN,ZHEN HAILIU.Global Attractor for the Generalized Dissipative KdV Equation with Nonlinearity[J].International Journal of Mathematical Sciences,2011,1:1-21.
  • 4Y CHOI.On the generalized Korteweg-De Vries equation with dissipation[J].Korean Math Soc,1996,33(3):557-573.
  • 5BolingGUO,GuoguangLIN.Steady State Solution for the Weakly Damped Forced Korteweg de Vries Equation 17[J].Communications in Nonlinear Science and Numerical Simulation,1998,3(2):123-128. 被引量:1
  • 6J GHIDAGLIA.Weakly Damped Forced Korteweg-de Vries Equations Behave as a Finite Dimens-ional Dynamical System in the Long Time[J].Journal of Differential Equations,1988,74:369-390.
  • 7GUO BOLING,CHEN FENGXIN.Finite Dimensional Behavior of Global Attractors for Weakly Damped and Forced KdV Equations Coupling With Nonlinear Schrodinger equation[J].Advances in Mathmatics,1994,1(23):88-90.
  • 8杜先云,陈炜.具有可加噪声的耗散KdV型方程的随机吸引子[J].四川师范大学学报(自然科学版),2012,35(5):651-655. 被引量:5
  • 9H CRAUEL,F FLANDOLI.Random Attractors[J].Dynam Differential Equations,1997,9:307-341.
  • 10H CRAUEL,F FLANDOLI.Attractors for random dynamical systems[J].Probability Theory and Rel-ated Fields,1994,100:365-393.

二级参考文献16

  • 1田立新,徐振源,刘曾荣.耗散孤立波方程的吸引子[J].应用数学和力学,1994,15(6):539-547. 被引量:8
  • 2田立新.SchrOdinger算子的极大耗散扩张[J].应用数学和力学,1994,15(10):919-926. 被引量:4
  • 3谷超豪.孤立子及应用[M].杭州:浙江出版社,1990.
  • 4Temam R. Infinite - Dimensional Systems in Mechanics and Physics[ M]. New York : Springer - Verlag,1988.
  • 5Bouard A, Debussche A. On the stochastic korteweg - de vries equation[ J]. J Funct Anal,1998,154:215 -251.
  • 6Bouard A, Debussche A. A stochastic nonlinear schrodinger equation with multiplicative noise[ J]. Commun Math Phys,1999,205:161 -181.
  • 7Bouard A, Debussche A. The stochastic nonlinear schrodinger equation in [ J]. Stochastic Anal Appl,2003 ,21:97 - 126.
  • 8Da Prato G, Debussche A,Temam R. Stochastic Burgers’ equation[ J]. Nonl Diff Eqns Appl,1994,1:389-402.
  • 9Crauel H,Debussche A, Franco F. Random attractors[ J]. J Dyn Diff Eqns, 1992,9:307 -341.
  • 10Crauel H, Flandoli F. Attractors for random dynamical systems[ J]. Prob Theo Related Fields, 1994,100:365 -393.

共引文献12

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部