期刊文献+

一类临界复Gross-Pitaevskii方程解的无粘性极限

Nonviscous Limit of Solutions to a Class of Critical and Complex Gross-Pitaevskii Equations
下载PDF
导出
摘要 用Duhamel公式和Strichartz估计对一类具有三次方和五次方耗散非线性项的复Gross-Pitaevskii方程(CGPE)进行分析,得到方程不同粘度系数趋于零时解之间的关系,即此方程解的无粘性极限. The complex Gross-Pitaevskii equation(CGPE) involving three power and five power dissipative nonlinear terms is studied, and we obtained the relationship of solutions to CGPE if viscosity coefficients tend to zero, that is, the nonviscous limit is obtained for CGPE by the Duhamel formula and Strichartz estimate.
作者 姜海波
出处 《湖北文理学院学报》 2014年第11期8-13,共6页 Journal of Hubei University of Arts and Science
基金 湖北省教育厅科学技术研究项目(B20122502)
关键词 复Gross-Pitaevskii方程 粘度系数 耗散 解的无粘性极限 The complexGross-Pitaevskii equation Viscosity coefficients Dissipation Nonviscous limit of solution
  • 相关文献

参考文献36

  • 1SULEM C, SULEM P L. The nonlinear SchrOdinger equation[M]. New York: Springer-Verlag, 1999.
  • 2CHEN T, PAVLOVIC N. The quintic NLS as the mean field limit of a Boson gas with three-body interactions[J/OL], http://www.ma.utexas.edu/mp_arc/c/ 08/08-235.pdf.
  • 3CAZENAVE T. Semilinear Schr6dinger Equations: Courant Lecture Notes in Mathematics[M]. New York: New York University, 2003.
  • 4TAO T. Nonlinear Dispersive Equations: Local and Global Analysis[M]. New York: AMS, 2006.
  • 5FUJIWARA D. A construction of the fundamental solution for the Sehr6dinger equation[J]. J. Analyse Math., 1979, 35(1): 41-96.
  • 6OH Y G. Cauchy problem and Ehrenfest's law of nonlinear Schr6dinger equations with potentials[J]. J. Diff. Eqs., 1989, 81 : 255-274.
  • 7ZHANG J. Stability of attractive Bose-Einstein condensates[J]. J. Statist Phys., 2000, 101 (3-4): 731-746.
  • 8CARLES R. Remarks on nonlinear SchrSdinger equations with harmonic potential[J]. Annales Henri Poincar6, 2002, 3(4): 757-772.
  • 9CARLES R. Nonlinear SchrOdinger equations with repulsive harmonic potential and Applications[J]. SIAM. J. Math. Anal., 2003, 35:823-843.
  • 10CARLES R. Linear vs. nonlinear effects for nonlinear SchrOdinger equations with potential[J]. Comm. Contemp. Math., 2005, 7: 483-508.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部