期刊文献+

高含硫天然气净化装置分析 被引量:6

Exergy analysis of highly sour natural gas purification plant
下载PDF
导出
摘要 针对高含硫天然气净化装置运行能耗高的问题,本文建立了高含硫天然气净化过程中各类值计算方法,并对离子溶液体系的值计算方法进行了修正,使其适用于酸气吸收过程中醇胺溶液的值计算。在天然气净化过程模拟软件Pro Max建立的净化过程全流程模型的基础上,采用分析方法对高含硫净化装置的全流程进行用能分析。分析结果表明,净化装置全流程的效率为54.2%,其中硫黄回收单元和尾气处理单元效率最高,分别为66.8%和66.1%;脱酸气单元的损失最高,占全流程总损失的43.5%,这是由于净化装置处理的原料气中H2S含量很高,需要更大溶剂循环量才能使净化气达到商品气标准,这导致吸收溶剂再生过程的能耗大大增加。本文研究成果可指导高含硫天然气净化装置的用能评价及节能改造。 To address the problem of high energy consumption of highly sour natural gas purification plant,exergy analysis was used to study the energy process of highly sour gas purification plant. The exergy calculation methods of natural gas purification process were established,and exergy calculation method of ionic solution system was corrected to calculate exergy of methylamine solution. On the basis of the whole process model built with simulation software of gas purification process ProMax, energy consumption process of the whole process of highly-sour natural gas purification plant was analyzed by exergy analysis. The exergy efficiency of the whole process of purification plant was 54.2%,with the highest exergy efficiency values of sulfur recovery unit and tail gas treatment unit 66.8%and 66.1%respectively. And the exergy loss of acid gas sweetening unit was the highest. The raw gas of purification plant was high H2S concentration and needed a greater amount of circulating solvent to remove acid gas to reach commodity gas standards. So the energy consumption of absorbing solvent regeneration process was greatly increased. Research conclusions could be used to guide energy evaluation and energy saving retrofit for highly sour natural gas purification plant.
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第12期3176-3182,共7页 Chemical Industry and Engineering Progress
关键词 高含硫天然气 净化装置 醇胺溶液 highly sour natural gas purification plant exergy methylamine solution
  • 相关文献

参考文献18

  • 1朱光有,戴金星,张水昌,李剑,史斗,文志刚.含硫化氢天然气的形成机制及分布规律研究[J].天然气地球科学,2004,15(2):166-170. 被引量:122
  • 2邢宪锋,赵会军,王树立.中空纤维膜吸收法脱除H_2S的实验研究[J].石油与天然气化工,2008,37(3):199-201. 被引量:6
  • 3边云燕,向波,汤晓勇,等.SY/T0612 2008高含硫化氢气田地面集输系统设计规范[S].北京:国家发展与改革委员会,2008.
  • 4Chen H, Zhang T, Dou B, et al. Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production[J].International Journal of Hydrogen Energy, 2009, 34.- 7208-7222.
  • 5Encan A S, Yakut K A, Kalogirou S A. Thermodynamic analysis of absorption systems using artificial neural network[J]. Renewable Energy, 2006, 31: 29-43.
  • 6Geuzebroek F H, Schneiders L H, Kraaijveld G J, et al. Exergy analysis of alkanolamine-based CO2 removal unit with Aspen Plus[J]. Energy, 2004, 29: 1241-1248.
  • 7Amrollahi Z, Ertesvag I S, Bolland O. Thermodynamic analysis on post-combustion CO2 capture of natural gas fired power plant[J]. International Journal of Greenhouse Gas Control, 2008, 4: 123-132.
  • 8朱利凯.天然气加工处理过程中的(火用)分析[J].石油与天然气化工,1992,21(2):88-93. 被引量:2
  • 9Gool W V. Thermodynamics of chemical references for exergy analysis[J]. Energy Conversion and Management, 1998, 39: 1719-1728.
  • 10中国国家标准化管理委员会.GB/T14909-2005能量系统炯分析技术导则[S].北京:国家发展与改革委员会,2006.

二级参考文献70

共引文献127

同被引文献50

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部