期刊文献+

半导体Z反应光解水制氢的光能转换效率及研究进展 被引量:5

Photo conversion efficiency of and research advance in semiconductor Z-scheme photocatalytic water splitting for hydrogen production
下载PDF
导出
摘要 通过介绍人工半导体Z反应的原理,综述该类型反应体系,包括模拟PSI催化剂(PS1[H2])、模拟PSII催化剂(PS2[O2])和介体(mediator)应用于人工模拟光解水制氢的研究进展,重点阐述此三者在Z反应中所起的作用及其电子传递机理的发展现状,并通过估算不同介体的光能转换效率比较各反应系统的优缺点,指出无介体Z反应系统的电子传递机理、非贵金属助剂的制备、在光催化还原二氧化碳和光电催化中的应用是未来Z反应研究的重点。 The principle of artificial semiconductor Z-scheme and recent advance in its catalysts for photocatalytic water splitting for hydrogen production are reviewed,including photosystem I catalysts (PS1[H2]) , photosystem II catalysts (PS2[O2]) and their mediators. Their effects in Z-scheme photocatalysis and mechanism of electron transfer of PS1[H2],PS2[O2] and their mediators are illustrated. A comparison of photo conversion efficiency among some of the reported Z-scheme systems is made. Future research on Z-scheme systems should be focused on the mechanism of electron transfer of Z-scheme systems without mediators,synthesis of non-noble metal co-catalysts and applications in photocatalytic reduction of carbon dioxide and photoelectrochemistry.
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第12期3221-3229,3245,共10页 Chemical Industry and Engineering Progress
基金 国家自然科学基金项目(21276254)
关键词 Z反应 光化学 光能转换效率 制氢 太阳能 Z-scheme photochemistry photo conversion efficiency hydrogen production solarenergy
  • 相关文献

参考文献69

  • 1Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238 (5358): 37.
  • 2Lubitz W, Reijerse E J, Messinger J. Solar water-splitting into H2 and O2: Design principles of photosystem II and hydrogenases[J]. Energy & EnvironmentalSeience, 2008, 1 (1): 15.
  • 3Ohtani B. Photocatalysis A to Z-What we know and what we do not know in a scientific sense[J]. Journal of Photochemistry and PhotobiologyC: Photochemistry Reviews, 2010, 11 (4): 157-178.
  • 4Sasaki Y, Nemoto H, Saito K, et al. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator[J]. Journal of Physical ChemistryC, 2009, 113 (40): 17536-17542.
  • 5Iwase A, Ng Y H, Ishiguro Y, et al. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light[J]. Journal of the American Chemical Society, 2011, 133 (29): 11054-11057.
  • 6Maeda K, Higashi M, Lu D L, et al. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J]. Journal of the American ChemicalSociety, 2010, 132 (16): 5858-5868.
  • 7Sato S, Arai T, Morikawa T, et al. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts[J]. Journal of the American ChemicalSociety, 2011, 133 (39): 15240-15243.
  • 8Hill R, Bendall F. Function of the 2 cytochrome components in chloroplasts-working hyothesis[J]. Nature, 1960, 186 (4719): 136-137.
  • 9Benhayyi G, Avron M. Light distribution and electron donation in Z-scheme[J].PhotochemistryandPhotobiology, 1971, 14 (3): 389.
  • 10Neumann J, Drechsler Z. Photoreduction of ferredoxin with various electron-donors-support for the Z-scheme of photosynthetic electron-transport[J]. Proceedings of the National Academy of Sciences of the united States of America: BiologicaI Sciences, 1984, 81 (7): 2070-2074.

同被引文献105

  • 1倪萌,M.K.H.Leung,K.Sumathy.电解水制氢技术进展[J].能源环境保护,2004,18(5):5-9. 被引量:59
  • 2张晓明,黄碧纯,叶代启.低温等离子体-光催化净化空气污染物技术研究进展[J].化工进展,2005,24(9):964-967. 被引量:28
  • 3FUJISHIMA A,HONDA K. Electrochemical photocatalysis of water at a semiconductor electrode[J]. Nature,1972,238(1):37-38.
  • 4WARREN S C,THIMSEN E. Plasmonic solar water splitting[J]. Energy Environ. Sci.,2012,5(1):5133-5146.
  • 5ANSARI S A,KHAN M M,KALATHIL S,et al. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm[J]. Nanoscale,2013,5(19):9238-9246.
  • 6CHENG H, FUKU K, KUWAHARA Y, et al. Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light[J]. J. Mater. Chem. A,2015,3(10):5244-5258.
  • 7LINIC S,CHRISTOPHER P,INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat. Mater.,2011,10(12):911-921.
  • 8AWAZU K,FUJIMAKI M,ROCKSTUHL C,et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide[J]. J. Am. Chem. Soc.,2008,130(5):1676-1680.
  • 9WANG P,HUANG B,DAI Y,et al. Plasmonic photocatalysts:harvesting visible light with noble metal nanoparticles[J]. Phys. Chem. Chem. Phys.,2012,14(28):9813-9825.
  • 10JIANG R B,LI B X,FANG C H,et al. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Adv. Mater., 2014,26(31):5274-5309.

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部