期刊文献+

离散广义分段仿射系统弹性H_∞滤波器的设计

Design of resilient H_∞ filter for discrete-time piecewise-affine singular systems
下载PDF
导出
摘要 为消除未知情况下外部干扰和测量噪声对控制系统性能的不利影响,以一类参数不确定性体现为范数有界形式的离散广义分段仿射系统为模型,研究具有H∞性能指标渐近稳定弹性滤波器的设计问题.通过采用广义分段仿射Lyapunov函数、投影定理以及几个基本引理,提出了对于由所设计弹性滤波器构成的滤波误差动态系统满足鲁棒H∞性能指标的反馈控制器设计方法.通过求解一组包含参变量的LMIs,可以得到保证广义分段仿射系统具有H∞性能的反馈控制器增益和渐近稳定弹性滤波器的待定系统矩阵,仿真结果证明了所提设计方法的有效性. This paper investigates the robust admissibility analysis and resilient filter controller synthesis for a class of discrete-time piecewise affine singular systems with asymptotic stability which possesses H∞performance is considered in this paper, in order to eliminate the adverse effects of external disturbances and measurement noise of control system performance. By using the piecewise-affine singular Lyapunov functions combined with Projection lemma and some basic lemmas, an approach of designing robust H∞ feedback controller is given, the conclusions ensure resilient filtering error dynamic system possessing H∞ performance. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by scalar variables. The feedback controller gain and resilient filter system matrix can ensure the stability of systems and guarantee the H∞ performance of the piecewise-affine singular systems. Finally, the practicability of the proposed methodologies is confirmed via some simulation examples.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第11期8-16,共9页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(61004038)
关键词 广义分段仿射系统 弹性滤波器 分段LYAPUNOV函数 LMIs piecewise-affine singular systems resilient filter piecewise Lyapunov function LMIs
  • 相关文献

参考文献18

  • 1MASUBUCHI I, KAMITANE Y, OHARA A, et al. H∞ control for descriptor systems: a matrix inequalities approach[J]. Automatica, 1997, 33(4):669-673.
  • 2DE OLIVEIRA M C, GEROMEL J C. A class of robust stability conditions where linear parameter dependence of the Lyapunov function is a necessary condition for arbitrary parameter dependence [ J ]. Systems Control Letters ,2005,54( 11 ) : 1131-1134.
  • 3QIU J, FENG G, GAO H. Approaches to robust H∞ static output feedback control of discrete-time piecewise- affine systems with norm-bounded uncertainties [ J ]. International Journal of Robust and Nonlinear Control, 2011, 21(7): 790-814.
  • 4FlU Zhonghui, ZHU Huanyu, ZHAO Jiemei. Further results on H∞ filtering for a class of discrete-time singular systems with interval time-varying delay [ J ]. Circuits, Systems, and Signal Processing,2013,32(3) : 1081-1095.
  • 5FENG Xiaoliang, WEN Chenglin, XU Lizhong. Finite horizon H∞ filtering for networked measurement system [ J]. International Journal of Control, Automation and Systems, 2013,11(1) : 1-11.
  • 6JUN Yoneyama. Robust H∞ filtering for sampled-data fuzzy systems [ J ]. Fuzzy Sets and Systems, 2013,217 : 110-129.
  • 7LI Zuxin, SU Hongye, GU Yong, et al. H∞ filtering for discrete-time singular networked systems with communication delays and data missing [ J ]. International Journal of Systems Science, 2013,44(4) : 604-614.
  • 8KIM J H. Delay-dependent robust H∞ filtering for uncertain discrete-time singular systems with interval time-varying delay[J]. Automatica,2010, 43(6): 591-597.
  • 9KIM J H. Delay-dependent approach to robust H∞ filtering for discrete-time singular systems with multiple time-varying delays and polytopic uncertainties [ J ]. International Journal of Control, Automation and Systems,2010,8(3) : 655-661.
  • 10LU Renquan, XU Yong, XUE Anke. H∞ filtering for singular systems with communication delays [ J ]. Signal Processing, 2010, 16(4): 1240-1248.

二级参考文献20

  • 1REN D, HASSANE A. On hybrid petri nets [ J]. Discrete Event Dynamic systems: Theory and Applications, 2001, 11 ( 1 ) : 9 -40.
  • 2LUNZE J, NIXDORF B, RICHTER H. Process supervision by means of hybrid model [ J ]. Journal of Process Control, 2001, 11(1): 89-104.
  • 3CHUA L, YING R. Canonical piecewise-linear analysis [ J ]. IEEE Transactions on Circuits and Systems, 1983, CAS -30(3) : 125 - 140.
  • 4TSUBONE T, SAITO T. Stabilizing and destabilizing control for a piecewise-linear circuit [ J ]. IEEE Transactions on Circuits and Systems--I: Fundamental Theory and Applications, 1998, 45(2) : 172 -177.
  • 5BEMPORAD A, FERRARI-TRECATE G, MORARI M. Observability and controllability of piecewise affine and hybrid systems [ J ]. IEEE Transactions on Automatic Control, 2000, 45 (10) : 1864 - 1876.
  • 6FERRARI-TRECATE G, CUZZOLA F, MIGNONE D, et al. Analysis of discrete-time piecewise affine and hybrid systems [ J ]. Automatica, 2002, 31 (12) : 2139 - 2146.
  • 7BEMPORAD A, TORRISI F, MORARI M. Optimization- based verification and stability characterization of piecewise affine and hybrid systems [R. Krogh B, Lynch N. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science. 2000,1790(2000) : 45 -58.
  • 8IMURA J, VAN DER SCHAFT A. Characterization of we11-posedness of piecewise-linear systems [ J 1- IEEE Transactions on Automatic Control, 2000, 45 ( 8 ) : 1600 - 1619.
  • 9QIU Jianbin, FENG Gang, GAO Huijun. Approaches to robust H static output feedback control of discrete-time piecewise-affine systems with norm-bounded uncertainties [ J ]. International Journal of Robust and Nonlinear Control, 2011, 5 (21) : 790 - 814.
  • 10XU Shengyuan, YANG Chengwu. H state feedback control for discrete singular systems [ J ]. IEEETransactions on Automatic Control, 2000, 7 (45): 1405 - 1409.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部