期刊文献+

SiC颗粒增强复合泡沫铝的性能研究 被引量:4

Properties of Si C Granular Reinforced Al Foams
下载PDF
导出
摘要 在加入粒径为0.5μm的Si C颗粒制备出复合泡沫铝的基础上,研究了Si C颗粒对熔体粘度、孔结构及力学性能的影响。结果表明:Si C颗粒对熔体粘度、孔结构都有重要影响,Si C颗粒增强粉末冶金泡沫铝的压缩应力-应变曲线与其他多孔泡沫金属相似;该试样的屈服强度随Si C颗粒含量的升高而增大。 Based on the compression tests of Si C granular reinforced Al foams made by PM route measured, the melt viscosity, pore structure and mechanical properties of the samples were investigated. Si C granular has great influences on the melt viscosity and pore structure of Al foams. The compressive stress-strain curve consists of three distinct regions, linear elasticity region, plastic collapse region and densification region. With the increase of volume fraction of Si C particles, the compressive yield strength under compression greatly improves.
机构地区 井冈山大学
出处 《热加工工艺》 CSCD 北大核心 2014年第22期43-45,共3页 Hot Working Technology
基金 江西省科技支撑项目(2010BGA01700) 井冈山大学大学生创新项目(粉末冶金泡沫组合梁制备及其性能研究)
关键词 SI C颗粒 泡沫铝 熔体粘度 孔结构 力学性能 Si C particle Al foams melt viscosity pore structure mechanical properties
  • 相关文献

参考文献5

二级参考文献19

  • 1John E.Hatch 刘静安等(译).铝的性能及物理冶金[M].重庆:科学技术文献出版社重庆分社,1990.13-15.
  • 2[2]Evans A G, Hutchinson J W, Ashby M F. Multifunctionality of cellular metal systems[J]. Progress in Materials Science, 1999, 43: 171-221.
  • 3[3]Banhart J. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46: 559-632.
  • 4[4]Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge: Cambridge University Press, 1997.
  • 5[5]Feng Y, Zheng H W, Zhu Z G. The microstructure and electrical conductivity of aluminum alloy foams[J]. Materials Chemistry and Physics, 2002, 78:196-201.
  • 6[6]Feng Y, Zhu Z G. Dynamic compressive behavior of aluminum alloy foams[J]. Journal of Materials Science Letters, 2001, 20: 1667-1668.
  • 7[7]Song Z L, Zhu J S, Ma L Q. Evolution of foamed aluminum structure in foaming process[J]. Materials Science and Engineering A, 2001, A298: 137-143.
  • 8[9]Chuba B. Electroless copper/nickel shielding: highperformance solution to electromagnetic interference[J]. Plating and Surface Finishing, 1989(9): 30-33.
  • 9Davies G J, Zhen S. Metallic foams: Their Production, Properties and Application[J]. Material Sience. 1983, 18(4):1899.
  • 10Ronald E. Miller. A Continuum Plasticity Model for the Constitutive and Indentation Behaviour of Foamed metals[J].Mechanical Sciences. 2000, 42(2) : 729--754.

共引文献71

同被引文献28

  • 1王志华,曹晓卿,马宏伟,赵隆茂,杨桂通.泡沫铝合金动态力学性能实验研究[J].爆炸与冲击,2006,26(1):46-52. 被引量:26
  • 2邹勇,蔡华苏.碳纤维增强铝基复合材料的研究进展[J].山东工业大学学报,1997,27(1):16-20. 被引量:16
  • 3SZLANCSIK A, KATONA B, BOBOR K, et al. Compressive behavior of aluminum matrix syntactic foams reinforced by iron hollow spheres [ J]. Materials & Design, 2015, 83: 230-237.
  • 4FANG Q, ZHANG J H, ZHANG Y D, et al. Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact [ J ]. Composite Structures, 2015, 124: 409-420.
  • 5PERONI M, SOLOMOS G, PIZZINATO V. Impact behaviour testing of aluminium foam [ J ]. International Journal of Impact Engineering, 2013, 53 ( 1 ) : 74-83.
  • 6MU Y, YAO G. Effect of fly ash particles on the compressive properties of closed-cell aluminum foams [ J ]. Materials Engineering and Performance 2010, 19(7) : 995-997.
  • 7MU Y, YAO G, LUO H. The dependence of damping property of fly ash reinforced closed-cell aluminum alloy foams on strain amplitude [ J ]. Materials & Design, 2010, 31(2) : 1007-1009.
  • 8CAO Z K, LI B, YAO G C, et al. Fabrication of aluminum foam stabilized by copper-coated carbon fibers [J]. Materials Science and Engineering A, 2008, 486 (1/2) : 350-356.
  • 9Mu Y, Yao G. Effect of fly ash particles on the compressive proper- ties of closed-cell aluminum foams [J]. Mater Eng Perform, 2010, 19:995.
  • 10Mu Y, Yao G, Luo H. The dependence of damping property of fly ash reinforced closed-cell aluminum alloy foams on strain amplitude [J]. Mater Des,2010,31 : 1007.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部