期刊文献+

Cu-3Ag-0.5Zr合金的高温低周疲劳性能研究 被引量:2

High Temperature Low Cycle Fatigue Properties of Cu-3Ag-0.5Zr Alloy
下载PDF
导出
摘要 研究了Cu-3%Ag-0.5%Zr合金在800K条件下的高温低周疲劳性能。对循环应力响应行为及循环应力-应变行为进行了分析,给出了Cu Ag Zr合金的疲劳参数,并根据试验数据拟合出了疲劳寿命曲线和方程。结果表明,Cu Ag Zr合金的位错密度较低,循环应力响应行为表现出循环软化特征,合金低周疲劳曲线方程为Δεt/2=0.003(2Nf)-0.1104+0.14(2Nf)-0.7792,合金具有较低的弹性应变幅和较低的过渡疲劳寿命,塑性对疲劳寿命起决定性作用。疲劳裂纹起源于试样表面,且存在有多个裂纹源,有大量微小孔洞存在,孔洞连接萌生裂纹,合金高温断裂方式为穿晶韧性断裂。 Low cycle fatigue tests of Cu-3% Ag-0.5% Zr alloy were conducted at 800 K in air. Cyclic stress response behavior and cyclic stress-strain behavior were analyzed. The fatigue parameters of Cu Ag Zr alloy, the fatigue life curve and equation was filt out according to the experimental datas. The results show that Cu Ag Zr alloy has low dislocation density. The cyclic stress response behavior exhibit cyclic softening characteristics. The low cycle fatigue curve equation: Δεt/2=0.003(2Nf)-0.1104+0.14(2Nf)-0.7792. The alloy has lower elastic strain amplitude and lower transition fatigue life. The plasticity plays a decisive role on the fatigue life. Fatigue cracks originate in the surface of the specimen, and there is more than one crack source, the presence of a large number of tiny holes appear. The holes are connected to crack initiation. The high temperature fracture mode of the alloy is transgranular ductile fracture.
作者 张超 徐玉松
出处 《热加工工艺》 CSCD 北大核心 2014年第22期105-108,115,共5页 Hot Working Technology
关键词 Cu-3Ag-0.5Zr合金 高温低周疲劳 寿命预测 微观结构 Cu-3Ag-0.5Zr alloy high temperature low cycle fatigue life prediction microstructure
  • 相关文献

参考文献10

  • 1吴峰,王秋旺,罗来勤,孙纪国.液体火箭发动机推力室冷却通道流动与传热数值研究[J].推进技术,2005,26(5):389-393. 被引量:10
  • 2StandardE606. Annual Book ofASTM Standards [S]. Philadel- phia, PA, ASTM. 1996,03. 01.
  • 3ASTM E606 Standard Practice for Swain - controlled Fatigue Test- ing[S]. 2005.
  • 4Chen L J, Wang Z G, Yao G. Low cycle fatigue behavior of a cast nickel base superalloy K417 at elevated temperature[J]. Acta Met- all Sin, 1999,35 : 1144.
  • 5Batra I S, Dey G K, Kulkarni U D, et al. Precipitation in a Cu- Cr-Zr alloy[J]. Materials Science and Engineering ,A, 2003,356 (1-2) :32-36.
  • 6Zeng K J, Hamalainen M. Lilius K. Phase relationships in Cu- rich corner ofthe Cu-Cr-Zr phase diagram [J]. Scripta Metallurgica etMaterialia, 1995,32(12):2009-2014.
  • 7Zeng K J, Hamalainen M. Theoretical study of the phase equilibria in the Cu-Cr-Zr system [J]. Journal of Alloys and Compounds, 1995,220(1-2) : 53-61.
  • 8Suzuki H, Kanno M, Kawakatsu I. Strength of Cu-Zr-Cr alloy re- lating to the aged structures [J]. J. Jpnlnst. Metals. 1969,33 (5): 628-633.
  • 9刘平,康布熙,曹兴国,黄金亮,顾海澄.快速凝固Cu-Zr合金的析出特性及其对性能的影响[J].功能材料,1999,30(6):624-626. 被引量:14
  • 10Marchionni M, Osinkolu G A, Maldini M. High temperature cy- cle deformation of a direetionally solidified Ni-Base superalloy. FatigueFraetEngMaster Struct[J]. 1996,19:955-962.

二级参考文献15

  • 1李军伟,刘宇.一种计算再生冷却推力室温度场的方法[J].航空动力学报,2004,19(4):550-556. 被引量:20
  • 2韩振兴,林文,张远君,朱谷君,冀守礼.液体火箭发动机铣槽推力室三维壁温分布计算[J].航空动力学报,1996,11(2):145-148. 被引量:10
  • 3董志力,陈南平,藤谷涉,堀茂德.Cu基合金析出相的电子显微分析[J].电子显微学报,1990,9(1):53-57. 被引量:2
  • 4冯文澜 张远君.液体火箭发动机原理[M].北京:北京航空航天大学,1991..
  • 5杨世铭 陶文铨.传热学(第三版)[M].北京:高等教育出版社,2000..
  • 6陶志刚,仪表材料,1986年,17卷,135页
  • 7Frohlich A, Immich H, Lebail F,et al. Three-dimensional flow analysis in a rocket engine coolant channel of high depth/width ratio[ R]. AIAA 91-2183.
  • 8Lebail F, Popp M, Numerical analysis of high aspect ratio cooling passage flow and heat transfer [ R ]. AIAA 93-1829.
  • 9Wang T S, Luong V. Numerical analysis of the hot-gasside and coolant-side heat transfer for liquid rocket engine combustors[ R]. AIAA 92-3151.
  • 10Lai Y G, Przekwas A J, Nguyen N. A concurrent multidsiciplinary approach for the analysis of liquid rocket engine combustors [ R ]. AIAA 94-3103.

共引文献22

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部