期刊文献+

气路闭环空气悬架系统能量损耗建模及分析 被引量:5

Modeling and Analysis of Energy Consumption for Air Suspension System with Closed-loop Air Circuit
下载PDF
导出
摘要 研究了高低压腔气路闭环空气悬架系统充放气过程中的能耗问题。基于热力学和车辆动力学理论建立了气路闭环空气悬架充放气模型并在Simulink中仿真,通过1/2车对空气弹簧进行充放气实验,实验结果验证了所建立的充放气模型的正确性。为分析研究闭环系统能量损耗途径,采用压缩气体有效能(即压缩气体对外界大气所做的功)对系统充气、放气、升压三个过程的能量损耗进行量化计算。仿真结果表明:充气过程中能耗随高压腔压力升高而变大;放气与升压过程中的能耗都随低压腔压力升高而降低;在同等条件下,高低压腔气路闭环系统相对开环系统可以节约大量的能量。 The energy consumption during charging and discharging processes of a closed-loop air suspension system with high and low pressure chambers was studied herein.Based on the thermodynamics theory and vehicle dynamics,the charging and discharging models of the closed-loop air suspension system were developed and simulated in the Simulink environment.The simulation model was validated by the charging and discharging experiments of the air springs on the half-vehicle system.In order to study the ways of energy loss of the closed-loop system,the compressed gas effective energy which means the work made by the compressed gas to the external atmosphere was adopted and quantitative calculations were completed during the processes of charging,discharging and boosting.The simulation results indicate that during the charging process the energy consumption increases along with the rising of the pressure in the high pressure chamber.However,energy consumption in both of discharging and boosting processes reduces along with rising of the pressure in the low pressure chamber.More energy can be saved by using closed-loop system with high and low pressure chambers comparing to the open-loop system under same circumstances.
机构地区 江苏大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第23期3239-3244,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51105177) 高等学校博士学科点专项科研基金资助项目(20103227110010 20113227120015) 江苏大学高级专业人才科研启动基金资助项目(11JDG047) 江苏省六大人才高峰资助项目(2012-ZBZZ-030)
关键词 空气悬架 充放气过程 高低压腔气路闭环 能量损耗 air suspension charging and discharging process closed-loop air circuit with high and low pressure chambers energy consumption
  • 相关文献

参考文献10

二级参考文献36

  • 1翟维丽,杨兆升,张广世.汽车空气悬架高度控制阀动力学模型的研究[J].汽车技术,2006(5):12-15. 被引量:7
  • 2杨林,陈思忠,吴志成,张斌.大客车空气悬架电子高度控制系统设计[J].北京汽车,2007(2):4-7. 被引量:7
  • 3GIECK J. Riding on air: A history of air suspension [M]. Warrendale, U.S.A: Society of Automotive Engineers, 1999.
  • 4DIXON G V, PEARSON J. Automatically controlled air spring suspension system for vibration testing[R]. Washington D C: National Aeronautics and Space Administration, 1967.
  • 5BURTON A W, TRUSCOTT A J, WELLSTEAD P E. Analysis, modelling and control of an advanced automotive self-levelling suspension system[J]. IEE Proc.-Control Theory Appl., 1995, 142(2): 129-139
  • 6HYUNSUP K, HYEONGCHEOL L, HANSOO K. Asynchronous and synchronous load leveling compensation algorithm in air spring suspension[C]// ICROS. International Conference on Control, Automation and Systems 2007, Seoul, Korea, 2007: 367-372.
  • 7WABCO. Electronically controlled air suspension(ECAS) for air-sprung buses[R]. German: A Division of WABCO Standard GmbH, 1997.
  • 8蔡茂林.现代气动技术理论与实践 第三讲:管路内的气体流动[J].液压气动与密封,2007,27(4):51-55. 被引量:9
  • 9Burton A W, Truscott A J, P E Wellstead. Analysis, modelling and control of an advanced automotive self-levelling suspension system [J]. IEE Proe.-Control Theory Appl. (S1350-2379), 1995, 142(2): 129-139.
  • 10Edmond R, Yildirim H. A High Performance Pneumatic Force Actuator System Part 1-Nonlinear Mathematical Model [J]. ASME Journal of Dynamic Systems Measurement and Control (S0022-0434), 2000, 122(3): 416-425.

共引文献120

同被引文献28

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部