期刊文献+

电解蚀刻法处理的钛及钛合金表面的对比研究 被引量:2

Comparative study of the titanium and titanium alloy implant electrolytic etching surface
下载PDF
导出
摘要 目的通过成骨细胞的体外培养,初步探讨钛及钛合金微-纳米三维形貌对成骨细胞生物学行为的影响。方法采用电解蚀刻法在纯钛及钛合金表面构建出不同尺寸的微-纳米三维形貌,并观察其三维结构表面对成骨细胞黏附、增殖、细胞形态、碱性磷酸酶(ALP)活性的影响。结果在成骨细胞的黏附和增殖方面,纯钛组和钛合金组表面均高于纯钛机械抛光组。纯钛组表面细胞胞体饱满,伸出大量伪足,并可见大量功能颗粒。ALP活性显著高于钛合金和纯钛机械抛光组表面。结论通过电解蚀刻法在纯钛和钛合金表面可形成不同直径和深度的碗形巢样及纳米结构;两个表面即30~50μm和5~8μm的表面和光滑表面相比,都明显促进了细胞的附着;30~50μm的纯钛表面更有利于促进细胞的增殖和分化。 Objective This preliminary study aims to investigate the effects of titanium and titanium alloy micro-nanodimensional topography on the biological behavior of osteoblasts in vitro.Methods Electrolytic etching(EE) method was used to produce micro-nano dimensional titanium surfaces.The surfaces were observed to determine their effects on the adhesion,proliferation,cell morphology,and alkaline phosphatase(ALP) activity of osteoblasts.Results The surfaces of the titanium and titanium alloy groups exhibited higher adhesion and proliferation of osteoblasts than those of the mechanical group.The titanium surface was covered with a group of cells,a large number of filopodia,and functional particles.The ALP activity of the titanium group was significantly higher than that of the titanium alloy and mechanical groups.Conclusion EE method in pure titanium and titanium alloy surfaces result in bowl-like nests and nanostructures of different diameters and depths.The diameters of the pure titanium and titanium alloy surfaces range from 30 to 50 μm and 5 to 8 μm,respectively.The former is more conducive to promote the proliferation and differentiation of cells.
出处 《华西口腔医学杂志》 CAS CSCD 北大核心 2014年第6期596-600,共5页 West China Journal of Stomatology
基金 吉林省科技厅基金资助项目(200905175)
关键词 纯钛 钛合金 种植体 成骨细胞 生物学行为 电解蚀刻 titanium titanium alloy implant osteoblast biological behavior electrolytic etching
  • 相关文献

参考文献9

  • 1Lee BH, Lee CY, Kim DG, et al. Effect of surface structureon biomechanical properties and osseointegration[J]. Materials Science Engineering, 2008, 28:1448-1461.
  • 2Abron A, Hopfensperger M, Thompson J, et al. Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model[J]. J Prosthet Dent, 2001, 85(1):40-46.
  • 3Meirelles L, Arvidsson A, Albrektsson T, et al. Increased bone formation to unstable nano rough titanium implants [J]. Clin Oral Implants Res, 2007, 18(3):326-332.
  • 4Watanabe I, McBride M, Newton P, et al. Laser surface treatment to improve mechanical properties of cast titanium[J]. Dent Mater, 2009, 25(5):629-633.
  • 5Bowers KT, Keller JC, Randolph BA, et al. Optimization of surface micromorphology for enhanced osteoblast responses in vitro[J]. Int J Oral Maxillofac Implants, 1992, 7(3):302-310.
  • 6Lincks J, Boyan BD, Blanchard CR, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition[J]. Biomaterials, 1998, 19(23):2219-2232.
  • 7García AJ. Get a grip: integrins in cell-biomaterial interactions[J]. Biomaterials, 2005, 26(36):7525-7529.
  • 8Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken[J]. Science, 1995, 268(5208):233-239.
  • 9Yamada KM, Geiger B. Molecular interactions in cell adhesion complexes[J]. Curr Opin Cell Biol, 1997, 9(1):76-85.

同被引文献101

  • 1马臣,王颖慧,曲立杰,张向宇.钛合金微弧氧化技术的研究现状及展望[J].中国陶瓷工业,2007,14(1):46-49. 被引量:18
  • 2Gittens RA, Olivares-Navarrete R, Cheng A, et al. Theroles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta biomaterialia, 2013, 9(4): 6268-6277.
  • 3Le Guehennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007, 23(7): 844-854.
  • 4Zhao L, Mei S, Chu PK, et al. The influence of hierarchical hybrid micro/nano -textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials, 2010, 31(19): 5072-5082.
  • 5Wang N, Li H, Lu W, et al. Effects of Ti02 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials, 2011, 32(29): 6900-6911.
  • 6Bryington MS, Hayashi M, Kozai Y, et al. The influence of nano hydroxyapatite coating on osseointegration after extended healing periods. Dent Mater, 2013, 29(5): 514-520.
  • 7Zhou J, Li B, Lu S, et al. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings. ACS applied materials & interfaces, 2013, 5(11): 5358-5365.
  • 8Zhu X, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials, 2004, 25(18): 4087-4103.
  • 9Zhao X, Wang G, Zheng H, et al. Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility. ACS applied materials & interfaces, 2013, 5(16): 8203-8209.
  • 10Liu H, Yazici H, Ergun C, et al. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta biomaterialia, 2008, 4(5): 1472-1479.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部