期刊文献+

矩形缺陷光子晶体太赫兹波波导的慢波特性 被引量:6

Slow-wave characteristics of photonic crystal defect waveguide with rectangular holes in THz wave domain
下载PDF
导出
摘要 设计了一种工作于太赫兹波段的矩形孔缺陷光子晶体慢波波导。首先分析三角空气孔型光子晶体的带隙特性,引入线缺陷形成波导,并将邻近缺陷空气孔设为矩形,通过分析矩形孔尺寸对波导的带隙结构、群速度的影响,确定孔尺寸;研究缺陷宽度对缺陷模式的影响,并通过优化将缺陷模式频率移到目标频率338 GHz处,最终在布里渊边界处实现了c0/1543(c0=3×108m/s)的低群速度,证明了矩形缺陷光子晶体太赫兹波导良好的慢波特性。 A kind of photonic crystal defect waveguide with rectangular holes which works in the terahertz domain is designed. Firstly, the band-gap property of the triangular air hole photonic crystal is analyzed. A line defect is intro- duced into the photonic crystal to form the waveguide. The air holes adjacent the defect are set as rectangle. The effect of the rectangular holes size on the band gap and the group velocity of the waveguide is analyzed and the holes size is obtained. The effect of the width of band gap on the defect mode is also studied. Then the defect mode frequency is moved to the target frequency 338 GHz by optimizing. A low group velocity of c0/1543 (Co =3 × l0^8 m/s) at the Bril- louin boundary is realized by using the photonic crystal defect THz waveguide with rectangular holes. Then its good slow-wave characteristic is 13roved.
出处 《激光与红外》 CAS CSCD 北大核心 2014年第11期1263-1267,共5页 Laser & Infrared
基金 重庆市自然科学基金项目(No.CSTC2010BB2414)资助
关键词 光子晶体 太赫兹 慢波 光子带隙 波导 photonic crystal terahertz slow wave photonie band-gap waveguide
  • 相关文献

参考文献11

  • 1Rostami A, H Rasooli, H Baghban. Terahertz Technology Fundamentals and Applications [ M ]. New York : Springer, 2011.
  • 2Hosako I, N Sekine,M Patrashin. At the Dawn of a New Era in Terahertz Technology [ J ]. Proceedings of the IEEE,2007,95(8) :1612 - 1623.
  • 3Nicolb B, G Carelli, A De Michele. Frequency Character-ization of a Terahertz Quantum-Cascade Laser[ J]. Instru- mentation and Measurement, 2007,56 (2) : 262 - 265.
  • 4陈书汉,曾梦琳,林恩宇,江绍基.方形螺旋光子晶体的能带结构研究[J].激光与红外,2012,42(7):795-798. 被引量:3
  • 5刘子辰,朵天波,陈均,潘武.锥台型光子晶体在太赫兹波段的透射特性[J].激光与红外,2014,44(3):306-308. 被引量:1
  • 6Figotin A, I vitebskiy. Slow light in photonic crystals [ J ]. Waves in Random and Complex Media, 2006, 16 (3): 293 - 382.
  • 7Zhao Y,Y Zhang, D. Wu. Wideband Slow Light With Large Group Index and Low Dispersion in Slotted Photonic Crystal Waveguide[ J]. Journal of Lightwave Technology, 2012,30(17) :2812 -2816.
  • 8Tang J,T Wang, X Li. Wideband and Low Dispersion Slow Light in Lattice-Shifted Photonic Crystal Waveguides [J]. Journal of Lightwave Technology, 2013,31 ( 19 ) : 3188 -3194.
  • 9Hayakawa R, N Ishikura, H C Nguyen, et al. Two-photon- absorption photodiodes in Si photonie-erystal slow-light wavcguides [ J ]. Applied Physics Letters, 2013, 102 (3) :031114.
  • 10Wu H,D S Citrin, L Y Jiang. Polarization-independent slow light in annular photonic crystals [ J ]. Applied Phys- ics Letters,2013,102(14) :141112.

二级参考文献26

  • 1S John. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett, 1987, 58: 2486 - 2489.
  • 2E Yablonovitch, Inhibited spontaneous emission in solidstate physics and electronics [ J ]. Phys. Rev. Lett, 1987, 58:2059 - 2062.
  • 3Ovidiu Toader, Sajeev John. Square spiral photonic crystals:Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps [ J ]. Phys. Rev,2002, E 66:42 -70.
  • 4Cristina Buzea, Kate Kaminska, Gisia Beydaghyan, et al. Thickness and density evaluation for nanostructured thin films by glancing angle deposition[ J ]. Vac. Sci. Technol. B,2005,23:2545 - 2552.
  • 5M O Jensen, M J Brett. Square spiral 3D photonic bandgap crystals at telecommunications frequencies [ J ]. Opt. Express ,2005,13:3348 - 3354.
  • 6S R Kennedy, M J Brett, H Miguez, et al. Optical properties of a three-dimensional silicon square spiral photonic crystal [ J ]. Photonics and Nanostructures, 2003, 1 : 37 - 42.
  • 7Marek Malac, Ray F Egerton. Thin-film regular-array structures with 10 -100 nm repeat distance [ J ]. Nanotechnology,2001,12 : 11 - 13.
  • 8Ovidiu Toader, Sajeev John. Square spiral photonic crystals:Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps [ J ]. Physical Review E,2002,66(016610) :1 -18.
  • 9S R Kennedy, M J Brett, O Toader, et al. Fabrication of Tetragonal Square Spiral Photonic Crystals [ J ]. Nano. Lett. ,2002,2 : 59 - 62.
  • 10Beydaghyan Gisia, Kaminska Kate, et al. Toward realization of photonic bandgap materials with glancing angle deposition [ J ]. SPIE,2003,4833 : 640 - 647.

共引文献2

同被引文献60

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部