期刊文献+

Ion Transportation Study for Thick Gas Electron Multipliers 被引量:1

Ion Transportation Study for Thick Gas Electron Multipliers
下载PDF
导出
摘要 The performance of gaseous detectors coupled to photocathodes is often limited by secondary effects. For instance, the ions generated from avalanche mul- tiplication will impact on the photocathode, yielding secondary electrons and generating spurious signals, with discharge eventually possible. They can also gradually damage the photocathode surface, resulting in loss of quantum efficiency. To quantify the ion- induced secondary effects, the notion of ion back flow (IBF) is defined as the fraction of avalanche-generated ions reaching the photocathode. The purpose of this work is to investigate ways to suppress ion back flow in thick gas electron multiplier (THGEM) based de- tectors. The performance of gaseous detectors coupled to photocathodes is often limited by secondary effects. For instance, the ions generated from avalanche mul- tiplication will impact on the photocathode, yielding secondary electrons and generating spurious signals, with discharge eventually possible. They can also gradually damage the photocathode surface, resulting in loss of quantum efficiency. To quantify the ion- induced secondary effects, the notion of ion back flow (IBF) is defined as the fraction of avalanche-generated ions reaching the photocathode. The purpose of this work is to investigate ways to suppress ion back flow in thick gas electron multiplier (THGEM) based de- tectors.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第12期35-39,共5页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 11205240 and 11265003, and the China Postdoctoral Science Foundation under Grant No 2012M510587.
  • 相关文献

参考文献17

  • 1Braem A, Cataldo G De, Davenport M, Mauro A D, Franco A, Gallas A, Hoedlmoser H, Martinengo Pet al 2005 Nucl. Instrurn. Methods A 553 187.
  • 2Mormann D. Breskin A. Chechik R and Bloch D 2004 Nucl.Instrum. Methods A 516 315.
  • 3Chechik R, Breskin A, ShMem C and Mormann D 2004 Nucl. Instrum. Methods A 535 303.
  • 4Breskin A, Alon R, Cortesi M, Chechik R, Miyamoto J, Dangendorf V, Maia J and Santos J M F Dos 2009 Nucl. Instrurn. Methods A 598 107.
  • 5Shalem C, Chechik R, Breskin A and Michaeli K 2006 Nucl. Lnstrura. Methods A 558 475.
  • 6Alexeev M, Birsa R, Bradamante F, Bressan A, Chiosso M, Ciliberti P, Croci G and Colantoni M L 2010 Nucl. Instrum. Methods A 617 396.
  • 7Triloki, Dutta B and Singh B K 2012 Nucl. Instrum. Meth- ods A 695 279.
  • 8Schultz G et al 1977 Rev. Phys. Appliquee 12 67.
  • 9Liu H Bet al 2012 J. Instrum. 7 C06001.
  • 10Anderson W, Azmoun B, Cherlin A, Chi C Y, Citron Z, Connors M, Dubey A, Durham J M et al 2011 N.ucl. In- strum. Methods A 646 35.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部