期刊文献+

一类具有额外食饵补充的随机捕食模型动力学行为分析

Stochastic Perturbation Dynamic Behavior Analysis of Additional Food Provided Predator-prey System
下载PDF
导出
摘要 考虑了一类额外食饵补充的随机捕食模型,讨论了随机系统全局正解的存在唯一性,给出了随机模型存在平稳分布的条件,讨论了食饵种群、捕食者种群的绝灭条件.最后通过数值仿真验证了上述结论的正确性. We consider an additional food provided predator-prey system with stochastic perturbation. There exists a unique positive solution of the system with positive initial value, and the existence of the stochastic model stationary distribution is proved. Moreover, the conditions for the system to be extinct are given and the conclusions are verified by numerical simulation.
出处 《北华大学学报(自然科学版)》 CAS 2014年第6期709-714,共6页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金项目(11271260) 上海市教委科研创新重点项目(13ZZ116)
关键词 随机捕食模型 LYAPUNOV函数 伊藤公式 平稳分布 绝灭性 stochastic predator-prey system Lyapunov function Ito’ s formula stationary distribution extinction
  • 相关文献

参考文献10

  • 1Daqing Jiang, Ningzhong Shi, Yanan Zhao. Existence, Uniqueness, and Global Stability of Positive Solutions to the Food-Limited Population Model with Random Perturbation [J]. Math Comput Modelling,2005 ,42 :651-658.
  • 2Chunyan Ji, Daqing Jiang, Xiaoyue Li. Qualitative Analysis of a Stochastic Ratio-dependent Predator-prey System [J] . Journal of Computational and Applied Mathematics ,2011 ,235: 1326-1341.
  • 3Chunyan Ji , Daqing Jiang, Ningzhong Shi. Analysis of a Predator-prey Model with Modified Leslie-Gower and Holling-type II Schemes with Stochastic Perturbation[J]. J Math Anal Appl ,2009 ,359: 482-498.
  • 4Chunyan Ii , Daqing Jiang, Ningzhong Shi. A Note on a Predator-prey Model with Modified Leslie-Gower and Holling-type II Schemes with Stochastic Perturbationj J}. J Math AnalAppl,2011 ,377: 435-440.
  • 5Sulin Pang, Feiqi Deng, Xuerong Mao. Asymptotic Properties of Stochastic Population Dynamics [J]. Dynamics of Continuous Discrete and Impulsive Systems Series A,2008,15(5a) :603-620.
  • 6B S R V Prasad, Malay Banerjee, P D N Srinivasu. Dynamics of Additional Food Provided Predator-prey System with Mutually Interfering Predatorsj J]. Math Biosci,2013,246: 176-190.
  • 7L Arnold. Stochastic Differential Equations: Theory and Applications [M] . New York: Wiley, 1972.
  • 8A Friedman. Stochastic Differential Equations and Their Applications [M] . New York: Academic Press, 1976.
  • 9R Z Has' minskii. Stochastic Stability of Differential Equations [M]. Netherlands: Sijthoff Noordhoff, Alphenaan den Rijn,1980.
  • 10F C Klebaner. Introduction to Stochastic Calculus with Applications [M]. London: Imperial College Press, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部