期刊文献+

纳米钨铜复合粉末的制备与微观形貌 被引量:7

Preparation and micro morphology of W-Cu nano-composite powders
下载PDF
导出
摘要 首先采用高浓度湿磨法制备超细WO3-CuO混合粉末,800℃空气中焙烧90min后得到CuWO4-WO3前驱体粉末,再通过氢气还原获得超细W-Cu复合粉末。将该复合粉末与直接还原超细WO3-CuO混合粉末所得的W-Cu复合粉末进行对比,并研究还原温度对W-Cu复合粉末的微观形貌、成分与粒度的影响。结果表明:经过30h高浓度湿磨,WO3-CuO混合粉末的中位径由44.88μm降至0.28μm,焙烧后得到的CuWO4-WO3粉末平均粒径小于0.7μm且分散良好。由CuWO4-WO3还原获得的W-Cu复合粉末细小、分散均匀,还原温度对其形貌影响不大,由WO3-CuO混合粉末直接还原得到的W-Cu复合粉末由大量W-Cu纳米颗粒构成,随还原温度升高,纳米W-Cu颗粒逐渐长大。 Ultrafine W-Cu composite powders were prepared by hydrogen reduction of CuWO4-WO3 precursors which calcined at 800℃ for 90min from concentrated wet ball milled WO3-CuO powder mixtures. The W-Cu composite powders reduced from different precursors were compared, and the effect of reduction temperature on the morphology, components and particle size of W-Cu composite powders was investigated. Results show that the median size of WO3-CuO powder mixtures decreases from 44.88 to 0.28μm with the milling time of 30 h. The CuWO4-WO3 precursors disperse well with mean particle size less than 0.7μm. The W-Cu powder reduced from CuWO4-WO3 precursors is fine and highly dispersed, and the reduction temperature has less effect on its morphology. The W-Cu powder reduced directly from WO3-CuO powder mixtures is composed by much W-Cu nano-composite particles, and the particles grow with increasing reduction temperature.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2014年第6期903-908,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(51274246) 中南大学粉末冶金国家重点实验室开放课题
关键词 湿磨 粒度分布 钨铜纳米粉末 还原温度 wet ball milling particle size distribution W-Cu nano-composite powders reduction temperature
  • 相关文献

参考文献18

  • 1Zt-IOU Y, SUN Q X, LIU R, et al. Microstructure and properties of fine grained W-15wt.% Cu composite sintered by microwave from the sol-gel prepared powders [J]. Journal of Alloys and Compounds, 2013, 547: 18-22.
  • 2RYU S S, PARK H R, KIM H T, et al. On sinterability of Cu-coated W nanocomposite powder prepared by a hydrogen reduction of a high-energy ball-milled WO3-CuO mixture [J]. Journal of Materials Science, 2012, 47(20): 7099-7109.
  • 3HONG S H, KIM B K. Fabrication of W-20wt% Cu composite nanopowder and sintered alloy with high thermal conductivity [J]. Materials Letters, 2003, 57(18): 2761-2767.
  • 4MANESHIANA M H, SIMCHI A, HESABI Z R. Structural changes during synthesizing of nanostructured W-20wt% Cu composite powder by mechanical alloying [J]. Materials Science and Engineering A, 2007, 445/446: 86-93.
  • 5CHENG J G. WAN L, CAI Y B, et al. Fabrication of W-20wt.%Cu alloys by powder injection molding [J]. Journal of Materials Processing Technology, 2010, 210(1): 137-142.
  • 6ABBASZADEHA H, MASOUDIB A, SAFABINESHA H, et al. Investigation on the characteristics of micro- and nano-structured W-15wt.%Cu composites prepared by powder metallurgy route [J]. International Journal of Refractory Metals and Hard Materials, 2012, 30(1): 145-151.
  • 7范景莲,朱松,刘涛.纳米W-Cu复合粉末制备技术的研究现状[J].硬质合金,2008,25(4):252-256. 被引量:6
  • 8K1M D G, OH S T, JEON H, et al. Hydrogen-reduction behavior and mierostructuml characteristics of WO3-CuO powder mixtures with various milling time [J]. Journal of Alloys and Compounds, 2003, 354(1/2): 239-242.
  • 9OZCAN S, CAN M M, CEYLAN A. Single step synthesis of nanocrystalline ZnO via wet-milling [J]. Materials Letters, 2010, 64(22): 2447-2449.
  • 10STENGER F, MENDE S, SCHWEDES J, et al. The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills [J]. Powder Technology, 2005, 156(2/3): 103-110.

二级参考文献55

共引文献37

同被引文献99

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部