期刊文献+

基于LO-EKF算法的分布驱动电动汽车状态估计的研究 被引量:8

A Study on the Vehicle State Estimation for a Distributed-drive EV Based on LO-EKF Algorithms
下载PDF
导出
摘要 本文中对分布式驱动电动汽车的状态估计进行研究。首先利用龙伯格状态观测器实时观测对车辆的状态估计影响较大的路面坡度,接着,提出了采用扩展卡尔曼滤波算法,以车辆ESP传感器所获取的数据信息作为观测值,对分布式驱动电动汽车的动力学状态变量进行估计。最后进行Carsim和MATLAB联合仿真。结果表明,基于扩展卡尔曼滤波和龙伯格观测器的车辆状态估计算法能较好的估算出车辆的相关动力学状态值,算法可行,收敛速度较快。 A study on vehicle state estimation is conducted for a distributed-drive electric vehicle in this paper. Firstly Luenberger observer (LO) is adopted to observe the road slope, which has significant effects on vehi-cle state estimation. Then extended Kalman filter ( EKF) algorithm is used with the data information obtained from ESP sensor as observed value, the dynamics state variables of distributed-drive electric vehicle are estimated. Final-ly a Carsim-Matlab co-simulation is performed. The results show that the proposed vehicle state estimation algorithm based on LO and EKF is feasible and can well estimate the relevant dynamics state variables of vehicle with a rather high convergence speed.
出处 《汽车工程》 EI CSCD 北大核心 2014年第11期1316-1320,共5页 Automotive Engineering
基金 国家自然科学基金(51175043,51205022) 电动汽车北京市工程研究中心开放基金(NELEV2014)资助
关键词 分布式驱动电动汽车 车辆状态估计 坡度观测 扩展卡尔曼滤波器 龙伯格观测器 distributed-drive electric vehicle vehicle state estimation road slope observation extended Kalman filter Luenberger observer
  • 相关文献

参考文献8

  • 1Satria M, Best M C. State Estimation of Vehicle Handling Dynam- ics Using Non-linear Robust Extended Adaptive Kalman Filter [ J]. Vehicle System Dynamics, 2004, 41 (S) : 103-112.
  • 2高振海,郑南宁,程洪.基于车辆动力学和Kalman滤波的汽车状态软测量[J].系统仿真学报,2004,16(1):22-24. 被引量:33
  • 3Ray L R. Nonlinear Tire Force Estimation and Road Friction Iden- tification[ J ]. Simulation and Experiments, Automatica, 1997,33 (10) :1819-1833.
  • 4Yozo Hori. Future Vehicle Driven by Electricity and Control-re- search on Four-wheel-motored "UOT Electric March II"[J]. IEEE Transactions on Industrial Electronics, 2004, 51 (5) : 954-962.
  • 5Rajamani R. Vehicle Dynamics and Control [ M ]. New York: Springer, 2005:99-108.
  • 6Kiencke U, Nielsen L. Automotive Control Systems[ M]. Berlin: Springer, 2000:50-54.
  • 7Luenberger D G. An Introduction to Observers[ J]. IEEE Transac- tions on Automatic Control, 1971 ,AC-16(6) :596-602.
  • 8Simon Haykin. Kalman Filtering and Neural Networks[ M]. New York: John Wiley & Sons, 2001:16-20.

二级参考文献1

共引文献32

同被引文献52

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部