期刊文献+

两尺度有限元粘塑性颗粒组合体压实模拟

Homogenization-based Two-scale Finite Element Simulation for Compactions of Viscoplastic Granular Assemblies
下载PDF
导出
摘要 采用一种基于均质化理论的两尺度有限元新方法,模拟粘塑性颗粒组合体的压实全过程,即在细尺度下,通过跟踪颗粒基本单元体(代表体元)的细尺度行为,来生成和更新颗粒组合体的粗尺度本构关系,求得颗粒运动和变形的数学表达式,并考虑了刚体运动与可变形微粒形变之间的耦合,基于此关系式,建立细尺度有限元模型,用以模拟分析颗粒介质在受压过程中的粘塑性细尺度结构行为;在粗尺度下,将颗粒组合体视为均质的连续体,采用粗尺度有限元模型,模拟颗粒组合体的受压过程,数值分析结果与文献实验数据基本一致,验证了该数值方法的准确性和有效性. A homogenization-based two-scale finite element method is developed to simulate compactions of visco-plastic granular assemblies. The new method is used to develop macro constitutive relationships in light of microscopic behavior. At the microscopic level, governing equations for the motion and deformation of particles, including coupling of rigid body motion and deformation of deformable bodies, are investigated. And an implicit fine-scale finite element model for granular media is developed to perform visco-plastic analysis for the assemblies, At the global scale level, the homogenized standard continuum is analyzed using a coarse- scale finite element model. To verify the accuracy and efficiency of the numerical method, a numerical example is simulated, and the results are in satisfactory agreement with the experimental results in the literature. This method can be used in a variety of problems that can be granular media, such as asphalt, polymers, and food products. represented using aluminum, snow,
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第11期1660-1664,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(10972162)
关键词 均质化 两尺度 代表体元 压实 颗粒组合体 有限单元法 homogenization volume element compaction element methodtwo-scale representativegranular assembly finite
  • 相关文献

参考文献7

  • 1Cuitino A M,Alvarez M C,Roddy M J,et al.Experimental characterization of the behavior of granular visco-plastic and visco-elastic solids during compaction[J].Journal of Material Science,2001,36(22):5487.
  • 2Powers J M.Two-phase viscous modeling of compaction of granular materials[J].Physics of Fluids,2004,16(8):2975.
  • 3Li X,Yu H S,Li X S.Macro-micro relations in granular mechanics[J].International Journal of Solid and Structure,2009,46(25/26):4331.
  • 4Wu Y C.Automatic adaptive mesh upgrade schemes of the stepby-step incremental simulation for quasi linear viscoplastic granular materials[J].Computer Methods in Applied Mechanics and Engineering,2008,197(17/18):1479.
  • 5Miehe C,Dettmar J,Zah D.Homogenization and two-scale simulations of granular materials for different microstructural constraints[J].International Journal of Numerical Methods in Engineering,2010,83(8/9):1206.
  • 6Nitka M,Combe G,Dascalu C,et al.Two-scale modeling of granular materials:a DEM-FEM approach[J].Granular Material,2011,13(3):277.
  • 7Yuching Wu Jianzhuang Xiao Cimian Zhu.THE COMPACTION OF TIME-DEPENDENT VISCOUS GRANULAR MATERIALS CONSIDERING INERTIAL FORCES[J].Acta Mechanica Solida Sinica,2011,24(6):495-505. 被引量:4

二级参考文献21

  • 1Reddy, J.N., On penalty function methods in the finite element analysis of flow problem. International Journal of Numerical Methods in Fluids, 1982, 2: 151-171.
  • 2Prasad,N.S., Hari,B.S. and Ganti,S.P., An adaptive mesh generation scheme for finite-element analysis. Computers ~ Structures, 1994, 50(1): 1-9.
  • 3Lee,C.K. and Hobbs,R.E., Automatic adaptive finite element mesh generation over rational B-spline sur- faces. Computers & Structures, 1998, 69(5): 577-608.
  • 4Lewis,R.W., Gethin,D.T. and Yang,X.S.S., A combined finite-discrete element method for simulating phar- maceutical powder tableting. International Journal of Numerical Methods in Engineering., 2005, 62(7): 853-867. Wu,Y.C., Automatic adaptive mesh upgrade schemes of the step-by-step incremental simulation for quasi linear viscous granular materials. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 1479-1494. Hughes,T.J.R., Liu,W.K. and Brooks,A., Review of finite element analysis of incompressible viscous flows by penalty function formulation. Journal of Computational Physics, 1979, 30: 1-60. Reddy, J.N., On the finite element method with penalty for incompressible fluid flow problems. In: The Mathematics of Finite Elements and Applications III, New York: Academic Press, 1979. Engelman,M., Sani,R., Gresho,P.M. and Bercovier,M., Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements. Intrenational Journal of Numerical Methods in Fluids, 1982, 2: 25-42.
  • 5Hughes,T.J.R., Franca,L.P. and Balestra,M., A new finite element formulation for computational fluid dynamics, V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes proble accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 1986, 59: 85-99.
  • 6Shiojima,T. and Shimazaki,Y., A pressure-smoothing scheme for incompressible flow problems. Interna- tional Journal of Numerical Methods in Fluids, 1989, 9: 557-567.
  • 7Reddy, J.N., On the finite element method with penalty for incompressible fluid flow problems. In: The Mathematics of Finite Elements and Applications III, New York: Academic Press, 1979.
  • 8Engelman,M., Sani,R., Gresho,P.M. and Bercovier,M., Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements. Intrenational Journal of Numerical Methods in Fluids, 1982, 2: 25-42.
  • 9Hughes,T.J.R. Franca,L.P. and Balestra,M., A new finite element formulation for computational fluid dynamics, V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes proble accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 1986, 59: 85-99.
  • 10Shiojima,T. and Shimazaki,Y. A pressure-smoothing scheme for incompressible flow problems. Interna- tional Journal of Numerical Methods in Fluids, 1989, 9: 557-567.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部