期刊文献+

金刚石固态量子计算中的高分辨率成像

Super-Resolution Imaging in Diamond Solid-State Quantum Computation
下载PDF
导出
摘要 20世纪90年代中期,随着Shor算法和Grover算法的提出,量子计算领域得到广泛关注.金刚石固态NV色心方案作为量子计算机热门物理实现方案之一,因其在室温下的超长相干时间和可精确操控等独特优势而备受青睐;此外,NV色心还有望通过磁共振成像方式实现单核自旋探测.然而NV色心固态量子计算的一种扩展方式受限于相邻NV色心之间的磁偶极相互作用,要求两个NV色心之间相距只有数十纳米.这一尺度远小于普通远场光学的分辨率,即光学衍射极限,采用传统的共聚焦方法已无法分辨.受激发射损耗(STED)和基态损耗(GSD)等超分辨成像技术能够突破光学衍射极限限制,达到纳米量级的分辨率;同时结合最新的金刚石表面微纳刻蚀技术,可实现NV色心固态量子计算中不同色心的分辨和精确定位.该文从固态金刚石NV色心体系和光学衍射等主要方面对利用STED和GSD高分辨成像技术提高传统共聚焦显微镜对NV色心体系成像分辨率进行简要的介绍,并结合实例介绍一些最新的研究进展. Quantum computation has been drawing more and more attentions, since the Shor's algorithm and Grover's algorithm are proposed in the middle 1990s. Among the systems being pursued for physically implementing a quantum computer, the diamond solid-state quantum computation, which use the electronic or nuclear spins of nitrogen-vacancy (NV) centers as qubits, is considered more favorable because it has a super long coherence time at room temperature and precise manipulations for the system are readily available. In addition, NV centers may be used for single spin detection by magnetic resonance. For NV centers with a distance of tens of nanometers among them, the inter-center force will be strong enough to establish a quantum computer. However, the conventional confocal microscopy can only be used to resolve centers that are more than two hundred nanometers away from each other. Super-resolution microscopy techniques, such as stimulated emission depletion (STED) and ground state depletion (GSD), may provide a way to resolve NV centers with a resolution beyond the diffraction limit. In recent year, super-resolution microscopy has been used in combination with advanced surface processing technology for accurate positioning of NV centers in diamond. In this paper, we briefly summarize the super-resolution microscopy techniques that have been used in diamond solid-state quantum computation, and reviewed the latest developments in the field.
出处 《波谱学杂志》 CAS CSCD 北大核心 2014年第4期449-464,共16页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(91021005)
关键词 磁共振成像(MRI) 光探测磁共振 高分辨率成像 量子计算 NV色心 magnetic resonance imaging optically detected magnetic resonance super-resolution imaging quantum computation nitrogen-vacancy center
  • 相关文献

参考文献53

  • 1Abbe E. Beitrlige zur Theorie des Mikroskops und der mikroskopischen Wahmehmung[J]. Arehiv for Mikroskopische Anatomie, 1873, 9(1): 413-468.
  • 2Lewis A, Isaacson M, Harootunian A, et al. Development of a 500-a spatial-resolution light-microscope. 1. Light is efficiently transmitted through gamma-16 diameter apertures[J]. Ultramieroscopy, 1984, 13(3): 227-231.
  • 3Pohl D W, Denk W, Lanz M. Optical stethoscopy-image recording with resolution lambda/20[J]. Appl Phys Lett, 1984, 44(7): 651 - 653.
  • 4Rugar D, Budakian R, Mamin H J, et al. Single spin detection by magnetic resonance force microscopy[J]. Nature, 2004, 430: 329-332.
  • 5Zwiller V, Bjork G. Improved light extraction from emitters in high refractive index materials using solid immersion lenses[J]. J Appl Phys, 2002, 92(2): 660-665.
  • 6Siyushev P, Kaiser F, Jacques V, et al. Monolithic diamond optics for single photon detection[J]. Appl Phys Lett, 2010, 97(24): 241 -902.
  • 7Wilson T, Sheppard C J R. Theory and Practice of Scanning Optical Microscopy[M]. New York: Academic Press, 1984.
  • 8Pawley J B. Handbook of Biological Confocal Microscopy (2nd ed) [M]. New York: Springer, 2006.
  • 9Hell S W, Stelzer E H K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation[J]. Opt Commun, 1992, 93(5-6): 277-282.
  • 10Gustafsson M G L, Agard D A, Sedat J W. Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses[J]. Proc SPIE, 1995, 2 412: 147-156.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部