期刊文献+

小波-Contourlet与迭代Cycle Spinning相结合的SAR图像去噪 被引量:3

De-noising of SAR Images Based on Wavelet-Contourlet Transform with Recursive Cycle Spinning
下载PDF
导出
摘要 通过分析合成孔径雷达图像的相干斑噪声模型,提出一种小波-Contourlet与迭代Cycle spinning相结合的SAR图像去噪方法.小波-Contourlet比小波变换、Contourlet变换能更稀疏地表达图像,更好地获得图像结构特征.Contourlet变换缺乏移不变性,导致小波-Contourlet也是缺乏移不变性的,对系数进行阈值处理会产生伪吉布斯现象.Cycle spinning算法可以有效地减少伪吉布斯现象,但不是最优的.为此,用小波变换代替LP(Laplacian pyramid)变换作子带分解,以迭代Cycle spinning代替多次移位取平均值.仿真结果表明,该方法不仅可以显著去除相干斑噪声,达到较高的峰值信噪比,而且还保留了图像的细节,改善了视觉效果. By analyzing a speckle model of synthetic aperture radar (SAR), a de-noising method for SAR images based on the wavelet-Contourlet transform and recursive cycle spinning is presented. Compared with wavelet transform and Contourlet transform, wavelet-Contourlet transform can express images more sparsely and better obtain image structure. Because the Contourlet transform lacks shift invariance, wavelet-Contourlet transform also lacks shift invariance. Threshold processing on the coefficients may produce pseudo Gibbs phenomena. Although a cycle spinning algorithm can reduce the pseudo Gibbs phenomena, it is not the best. In this paper, wavelet transform is used to replace the Laplacian pyramid transform (LPT) for sub-band decomposition. Recursive cycle spinning is used to replace the cycle spinning. Simulation results show that the proposed algorithm is efficient, and it performs significantly better in reducing speckle noise, resulting in higher peak signal-to-noise ratio, more image details and better visual quality.
出处 《应用科学学报》 CAS CSCD 北大核心 2014年第6期605-610,共6页 Journal of Applied Sciences
基金 国家自然科学基金(No.61106022) 北京市自然科学基金(No.4143066)资助
关键词 合成孔径雷达图像 去噪 CONTOURLET 小波-Contourlet 迭代Cycle spinning SAR image, de-noising, Contourlet, wavelet-Contourlet, recursive Cycle spinning
  • 相关文献

参考文献18

  • 1GOODMAN J W.Some fundamental properties of speckle[J].Journal of the Optical Society of America,1976,66(11):1145-1150.
  • 2HUA X,PIERCE L E,ULABY F T.Despeckling SAR images using a low-complexity wavelet denoising process[C]//Geoscience and Remote Sensing Symposium,2002,1:321-324.
  • 3EOM K B.Anisotropic adaptive filtering for speckle reduction in synthetic aperture radar images[J].Optical Engineering,2011,50(5):97-108.
  • 4GLEICH D,KSENEMAN M,DATCU M.Despeckling of TerraSAR-X data using second-generation wavelets[J].IEEE Geoscience and Remote Sensing Letters,2010,7(1):68-72.
  • 5XIE H,PIERCE L E,ULABY F T.SAR speckle reduction using wavelet denoising and Markov random field modeling[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(10):2196-2212.
  • 6Do M N.Directional multiresolution image representation[D].Lausanne,Switzerland,2001.
  • 7Do M N,VETTERLI M.Contourlets:a directional multiresolution image representation[C]//Proceedings of IEEE International Conference on Image Processing.Rochester,NY:2002:357-360.
  • 8梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 9COIFMAN R R,DONOHO D L.Translation invariant denoising[C]//Wavelets and Statistics,Springer Lecture Notes in Statistics 103.New York:SpringerVerlag.1995:125-150.
  • 10刘帅奇,胡绍海,肖扬.基于小波-Contourlet变换与Cycle Spinning相结合的SAR图像去噪[J].信号处理,2011,27(6):837-842. 被引量:16

二级参考文献38

  • 1梁栋,李瑶,沈敏,高清维,鲍文霞.一种基于小波-Contourlet变换的多聚焦图像融合算法[J].电子学报,2007,35(2):320-322. 被引量:30
  • 2Goodman J W. Some fundamental properties of speckle [J]. Journal Optical Society America, 1976, 6 ( 11 ) : 1145-1150.
  • 3Liu Z X, Hu S H, Xiao Y, Qu G Z, Kim K S, SAR im- age target extraction based on 2-D leapfrog filtering, Pro- ceedings of 2010 IEEE 10th International Conference on Signal Processing, (ICSP2010) , 2010, pp. 1943-1946.
  • 4肖扬,张颖康,一种基于二维混合变换的SAR回波信号去噪预处理方法,中国国家知识产权局,申请号:2009100083345.7,申请13期:2009-05-04.
  • 5Do M N. Directional multiresolution image representation [ D]. PhD thesis, EPFL, Lausanne, Switzerland, 2001.
  • 6Do M N, Vetterli M. Contourlets: A directional muhireso- lution image representation[ C]. Proc of IEEE International Conference on Image Processing. Rochester, NY: 2002. 357 -360.
  • 7J W Goodman. Some fundamental properties of speckle [ J ]. J. Opt. Soc. Am, 1976,66 ( 11 ) : 1145-1150.
  • 8Cunha A L, Zhou J P, and Do M N. The nonsubsampled Contourlet transform: Theory, design and application. IEEE Trans. on Image Processing, 2006, 15 (10) : 3059- 3101.
  • 9Eslami R, Radha H. Wavelet based Contourlet Transform and it's Application to Image Coding[ C ]. Singapore: IEEE International Conference on Image Processing, 2004:3189- 3192.
  • 10Coifman R R, Donoho D L. Translation invariant denoising I C]. Wavelets and Statistics, Springer Lecture Notes in Statistics 103. New York: Springer-Verlag. 1995. pp. 125- 150.

共引文献56

同被引文献21

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部