期刊文献+

SiC功率器件离子注入和退火设备及工艺验证 被引量:4

Ion Implantion and Annealing Equipment for SiC Power Device and the Process Certification
下载PDF
导出
摘要 针对SiC功率器件工艺制程中离子注入和激活退火的技术难题,利用爱发科公司自行设计并开发的高温离子注入设备(ULVAC,IH-860DSIC)、碳膜溅射设备(ULVAC,SME-200)和高温激活退火设备(ULVAC,PFS-6000-25)。通过计算模拟、AFM对比结果、Hall电阻测定和RHEED图像分析等表征手段,研究了高温高能多步注入、碳膜覆盖技术和退火温度分别对SiC器件的物理特性、表面特性及电学特性的影响。结果表明,采用500℃A1离子注入浓度为5×10^18cm^-3、20nm厚碳膜溅射技术和1700~2000℃激活退火技术,能够实现具有良好表面特性和电学特性的P型SiC掺杂工艺。设备的稳定性已在多条SiC生产线上用于制造SiC—SBD器件和SiC.MOSFET器件完成工艺验证。 According to the technical problem of ion implantion and activation annealing process in SiC power devices, high-temperature ion implantion equipment (ULVAC, IH-860DSIC) , carbon sputter equipment (ULVAC, SME-200) and high-temperature activation annealing equipment (ULVAC, PFS- 6000-25) designed and developed by ULVAC company were adopted. By virtue of computer simulation, AFM comparison results, Hall resistance test and RHEED pattern analysis, the influences of the implan- tion with high-temperature high-energy multi-step, carbon-cap technology and annealing temperature on the physical characteristic, surface characteristic and electrical characteristic were respectively investiga- ted. The result shows that using the A1 ion implantion concentration of 5xlOlScm-3 at 500 ~C , the 20 nm thickness of carbon sputtering technology and activation annealing technology with the temperature of 1 700-2 000 ~C, p-type SiC dopant process with excellent surface characteristic and electrical characteris- tic can be achieved. The stability of the equipment has been confirmed from the manufacturer to fabricate the SiC-SBD device and SiC-MOSFET device in many SiC production lines for process certification.
出处 《半导体技术》 CAS CSCD 北大核心 2014年第12期951-956,共6页 Semiconductor Technology
关键词 SiC功率器件 高温离子注入 高温激活退火 碳膜溅射 SiC power device high-temperature ion implantion high-temperature activation an-nealing carbon sputter
  • 相关文献

参考文献20

  • 1MATSUNAMI H,KIMOTO T.Step-controlled epitaxial growth of Si C:high quality homoepitaxy[J].Materials Science and Engineering:R,1997,20(3):125-166.
  • 2TAKASHI T,AKIMASA K,NORIYUKI I,et al.Experimental demonstration of 1200 V Si C-SBDs with lower forward voltage drop at high temperature[J].Materials Science Forum,2012,717/720:917-920.
  • 3PETRIK P,SHAABAAN E R,LOHNER T,et al.Ion implantation-caused damage in Si C measured by spectroscopic ellipsometry[J].Thin Solid Films,2004,455/456:239-243.
  • 4CHRISTEL L A,GIBBONS J F,Stoichiometric disturbances in ion implanted compound semiconductors[J].Journal of Applied Physics,1981,52:5050-5055.
  • 5HALLEN A,HENRY A,PELLEGRINO P,et al.Ion implantation induced defects in epitaxial 4H-Si C[J].Materials Science and Engineering,1999,61/62:378-381.
  • 6GHEZZO M,BROWN D M,DOWNEY E,et al.Nitrogen-implanted Si C diodes using high-temperature implantation[J].IEEE Electron Device Letters,1992,13:636-641.
  • 7ZHANG Y,WEBE J,JIANG W,et al.Effects of implantation temperature on damage accumulation in Al-implantated 4H-Si C[J].Journal of Applied Physics,2004,95:4012-4018.
  • 8SAKS N S,SUVOROV A V,CAPELL D C.High tempera-ture high-dose implantation of aluminum in 4HSi C[J].Applied Physics Letters.2004,84:5195-5197.
  • 9BOHN H G,WILLIAMS J M,MCHARGUE C J,et al.Recrystallization of ion-implantedα-Si C[J].Journal of Materials Research,1987,2:107-116.
  • 10SESHADRI S,ELDRIDGE G W,AGARWAL A K.Comparison of the annealing behavior of high-dose nitrogen-,aluminum-,and boron-implanted 4H-Si C[J].Applied Physics Letters,1998,72:2026-2028.

同被引文献11

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部