摘要
证明了如果λ_1,λ_2,…,λ_(12)是非零实数,不全同号并且两两之比不全为有理数,那么对于给定的任意实数η和σ,0<σ<1/16,不等式|λ_1x_1~2+λ_2x_2~4+λ_3x_3~4+…+λ_(12)x_(12)~4+η|<(max_(1<i<12)|x_i|)^(-σ)有无穷多正整数解x_1,x_2,…,x_(12)
Abstract: It is proved that if λ1,λ2,…,λ12 are nonzero real numbers, not all of the same sign and not all in rational ratios, then for given real numbers η and σ,0〈σ〈1/16, theinequality |λ1x1/2+λ2x2/4+λ3x3/4+…+λ12x12/4+η|〈(max1〈i〈12|xi|)-σ has infinitely manysolutions in positive integers x1,x2…,x12.
出处
《数学进展》
CSCD
北大核心
2014年第3期379-386,共8页
Advances in Mathematics(China)
基金
Project supported by NSFC(No.11201107)
Anhui Province Natural Science Foundation(No.1208085QA01)