期刊文献+

一个加性混合幂丢番图不等式(英文) 被引量:1

One Additive Diophantine Inequality With Mixed Powers
原文传递
导出
摘要 证明了如果λ_1,λ_2,…,λ_(12)是非零实数,不全同号并且两两之比不全为有理数,那么对于给定的任意实数η和σ,0<σ<1/16,不等式|λ_1x_1~2+λ_2x_2~4+λ_3x_3~4+…+λ_(12)x_(12)~4+η|<(max_(1<i<12)|x_i|)^(-σ)有无穷多正整数解x_1,x_2,…,x_(12) Abstract: It is proved that if λ1,λ2,…,λ12 are nonzero real numbers, not all of the same sign and not all in rational ratios, then for given real numbers η and σ,0〈σ〈1/16, theinequality |λ1x1/2+λ2x2/4+λ3x3/4+…+λ12x12/4+η|〈(max1〈i〈12|xi|)-σ has infinitely manysolutions in positive integers x1,x2…,x12.
作者 牟全武
机构地区 同济大学数学系
出处 《数学进展》 CSCD 北大核心 2014年第3期379-386,共8页 Advances in Mathematics(China)
基金 Project supported by NSFC(No.11201107) Anhui Province Natural Science Foundation(No.1208085QA01)
关键词 丢番图不等式 混合幂 Davenport-Heilbronn方法 diophantine inequality mixed power Davenport-Heilbronn method
  • 相关文献

参考文献1

二级参考文献11

  • 1Davenport H,Heilbronn H.On indefine quadratic forms in five variables.J.London Math.Soc.1946,21:185-193.
  • 2Watson G L.On indefinite quadratic forms in five variables.Proc.London Math.Soc.1953,3(3):170-182.
  • 3Bambah R P.Four squares and a kth power.Quart.J.Math.Oxford,1954,5:191-202.
  • 4Cook R J.Diophantine inequalities with mxied powers.J.Number Theory,1977,9:142-152.
  • 5Cook R J.Diophantine inequalities with mixed powers,Ⅱ.J.Number Theory,1979,11(1):49-68.
  • 6Brudern J.Additive Diophantine inequalities with mixed powers,Ⅰ.Mathematika,1987,34:124-130.
  • 7Brudern.Additive Diophantine inequalities with mixed power,Ⅱ.Mathematika,1987,34:131-140.
  • 8Brudern.Additive Diophantine inequalities with mixed power,Ⅲ.J.Number Theory,1991,37(2):199-210.
  • 9Davenport H,Roth K F.The solubility of certain Diophantine inequalities.Mathematika,1955,2(4):81-96.
  • 10Kua L K.On Waring's problem.Quart.J.Math.Oxford,1938,9:199-202.

共引文献2

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部