摘要
对任意正整数m,n,r,定义S_(n,m)^((r))=Σ_(k_1+K_2+…+k_m=n)(_(k_1,k_2,…,k_m)~n)~r,并定义T_(n,m)^((r))=Σ_(k_1+K_2+…+k_m=n)(-1)^(k_1)(_(k_1,k_2,…,k_m)~n)~r.对S_(n,m)^((r))和T_(n,m)^((r))获得了若干可除性性质.
n r Abstract: For any positive integers m, n, r, define S^r/n,m=Σ_(k1+K2+…+km=n)(k1,k2,^n…,km)^r, T^r/n,m=Σ_(k1+K2+…+km=n)(-1)^k1(k1,k2,^n…,km)^r.In this paper, we obtain several divisible proper-ties on S^r/n,m and T^r/n,m
出处
《数学进展》
CSCD
北大核心
2014年第3期387-397,共11页
Advances in Mathematics(China)