期刊文献+

加权Dirichlet空间上加权复合算子的Fredholm性

Fredholm Weighted Composition Operators on the Weighted Dirichlet Space
原文传递
导出
摘要 本文给出了加权Dirichlet空间D_β上有界Fredholm加权复合算子的刻画,作为推论分别给出了D_β上加权复合算子是有界可逆的和酉算子的刻画. In this paper, the bounded, Fredholm weighted composition operator on weight- ed Dirichlet space Dβ is studied. As corollaries, the conditions for a weighted composition oper- ator on Dβ to be bounded, invertible and unitary are characterized respectively.
作者 赵连阔
出处 《数学进展》 CSCD 北大核心 2014年第3期419-424,共6页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10971195 No.11201274) 山西省青年科技研究基金(No.2010021002-2)
关键词 加权DIRICHLET空间 加权复合算子 Fredholm性 weighted Dirichlet space weighted composition operator Fredholmness
  • 相关文献

参考文献16

  • 1Bourdon, P.S., Fredholm multiplication and composition operators on the Hardy space, J. Integr. Equ. Oper. Theory, 1990, 13(4): 607-610.
  • 2Bourdony P.S. and Narayan, S.K., Normal weighted composition operators on the Hardy space H2(U), J. Math. Anal. Appl., 2010~ 367(1): 278-286.
  • 3Contreras, M.D. and Hernndez-Diaz, A.G., Weighted composition operators on Hardy spaces, J. Math. Anal. Appl., 2001, 263(1): 224-233.
  • 4Contreras, M.D. and Hernndez-Diaz, A.G., Weighted composition operators between different Hardy spaces, Integr. Equ. Oper. Theory, 2003, 46(2): 165-188.
  • 5Cowen, C.C. and MacCluer, B.D., Composition Operators on Spaces of Analytic Functions, Boca Raton: CRC Press, 1995.
  • 6Cukovic, Z. and Zhao, R.H., Weighted composition operators on the Bergman space, J. London Math. Soc., 2004, 70(2): 499-511.
  • 7Cuckovic, Z. and Zhao, R.H., Weighted composition operators between different weighted Bergman spaces and different Hardy space Illinois J. Math., 2007, 51(2): 479-498.
  • 8Douglas, R.G., Banach Algebra Techniques in Operator Theory New York: Springer-Verlag 1998.
  • 9Gunatillake, G., Invertible weighted composition operators, J. Funct. Anal., 2011, 261(3): 831-860.
  • 10Guo, K.Y., Defect operators for submodules of H2 J. Reine Angew. Math., 2004, (573): 181-209.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部