期刊文献+

酸性条件下Ti(Ⅳ)催化O_3/H_2O_2降解邻苯二甲酸二甲酯 被引量:1

Degradation of Dimethyl Phthalate by Ti(Ⅳ)-catalyzed O_3/H_2O_2 Under Acidic Conditions
原文传递
导出
摘要 研究了酸性条件下O3、O3/H2O2、Ti(Ⅳ)/O3和Ti(Ⅳ)/O3/H2O2氧化邻苯二甲酸二甲酯(DMP)的效能.结果表明,在初始pH为2.8条件下,Ti(Ⅳ)/O3/H2O2体系对DMP的降解效率,矿化程度和臭氧的利用率都明显优于其他3种氧化体系.相同条件下O3、O3/H2O2、Ti(Ⅳ)/O3和Ti(Ⅳ)/O3/H2O2降解DMP的一级表观速率常数分别为3.96×10-4s-1、9.54×10-4s-1、1.07×10-3s-1和6.41×10-3s-1.与单独臭氧化相比,Ti(Ⅳ)/O3/H2O2体系臭氧的利用率约可提升6.51%.优化实验表明,本实验条件下Ti(Ⅳ)的最佳浓度为1.4 mg·L-1,H2O2最佳投加量为10 mg·L-1.结合气质联用(GC/MS)与离子色谱(IC)的分析结果,对Ti(Ⅳ)/O3/H2O2降解DMP的可能反应途径进行了初步的解析. The degradation efficiencies of dimethyl phthalate(DMP) by O3,O3/H2O2,Ti(Ⅳ)/O3 and Ti(Ⅳ)/O3/H2O2 were investigated under acidic conditions. The results indicated that Ti(Ⅳ)/O3/H2O2 was the best system with the highest degradation efficiency and mineralization rate of DMP,and the highest utilization rate of ozone at pH 2. 8. The apparent rate constants of DMP degradation by O3,O3/H2O2,Ti(Ⅳ)/O3 and Ti(Ⅳ)/O3/H2O2 under the same conditions were 3. 96 × 10- 4s^- 1,9.54 ×10- 4s^- 1,1. 07 × 10^-3s^- 1and 6. 41 × 10^-3s^- 1,respectively. The ozone utilization rate of Ti(Ⅳ)/O3/H2O2 was improved by 6. 51% compared with that of ozonation alone. The experimental results showed that the optimized concentrations of Ti(Ⅳ) and H2O2 were 1. 4 mg·L^-1and 10 mg·L^-1,respectively. According to the results of gas chromatography-mass spectrometry(GC/MS) and ion chromatography analysis,the possible reaction pathway of DMP degradation by Ti(Ⅳ)/O3/H2O2 was proposed and discussed.
出处 《环境科学》 EI CAS CSCD 北大核心 2014年第8期2980-2984,共5页 Environmental Science
基金 国家自然科学基金项目(21176225) 浙江省重大科技专项(2013C03019)
关键词 臭氧 过氧化氢 钛离子 邻苯二甲酸二甲酯 中间产物 降解 ozone hydrogen peroxide Ti(Ⅳ) ion dimethyl phthalate intermediates degradation
  • 相关文献

参考文献28

  • 1Oehlmann J, Oetken M, Sehulte-Oehlmann U. A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption [ J ]. Environmental Research, 2008, 108 (2) : 140-149.
  • 2Roslev P, Varkamp K, Aarup J, et al. Degradation of phthalate esters in an activated sludge wastewater treatment plant [ J ]. Water Research, 2007, 41(5): 969-976.
  • 3Sundell J, Bornehag C G. Presences of phthalate esters in homes [J]. Epidemiology, 2006, 17(6): 586.
  • 4Boonyaroj V, Chiemchaisri C, Chiemchaisri W, et al. Toxic organic micro-pollutants removal mechanisms in long-term operated membrane bioreactor treating municipal solid waste leachate[ J]. Bioresouree Technology, 2012, 113: 174-180.
  • 5Cai Q Y, Mo C H, Wu Q T, et al. Katsoyiannis A. Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China [ J ]. Chemosphere, 2007, 68 ( 9 ) : 1751-1762.
  • 6Kong S F, Ji Y Q, Liu L L, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China[ J]. Environmental Pollution, 2012, 170 : 161-168.
  • 7Lottrup G, Andersson A M, Leffers H, et al. Possible impact of phthalates on infant reproductive health[J]. International Journal of Andrology, 2006, 29 ( 1 ) : 172-180.
  • 8Hoyer P B. Reproductive toxicology: current and future directions [ J ]. Biochemical Pharmacology, 2001, 62 ( 12 ) : 1557-1564.
  • 9Stapes C A, Peterson D R, Parkerton T F, et al. The environmental fate of phthalate esters: A literature review [ J ]. Chemospherc, 1997, 35(4) : 667-749.
  • 10Hammad Khan M, Jung J Y. Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase [ J ]. Chemosphere, 2008, 72 (4) : 690- 696.

二级参考文献23

  • 1马军,张涛,陈忠林,隋铭皓,李学艳.水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨[J].环境科学,2005,26(2):78-82. 被引量:54
  • 2Arana I, Santorum P, Muela A, Barcina I. Chlorination and ozonation of waste-water: comparative analysis of efficacy through the effect on Escherichia coli membranes. Journal of Applied Microbiology, 1999, 84 ( 5 ) 883-888.
  • 3Deborde M, Rabouan S, Mazellier P, Duguet J P, Legube B. Oxidation of bisphenol A by ozone in aqueous solution. Water Research, 2008, 42 (16) : 4299-4308.
  • 4Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water ( Ⅰ ) : Nondissociating organic compounds. Water Research, 1983, 17 (2): 173-183.
  • 5Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water (Ⅱ): Dissociating organic compounds. Water Research, 1983, 17 (2) : 185-194.
  • 6Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53 (1) : 51-59.
  • 7Monneyron P, Mathe S, Manero M H, Foussard J N. Regeneration of high silica zeolites via advanced oxidation processes--a preliminary study about adsorbent reactivity toward ozone. Chemical Engineering Research and Design, 2003, 81 (A9): 1193-1198.
  • 8Lanao M, Ormad M P, Ibarz C, Miguel N, Ovelleiro J L. Bactericidal effectiveness of O3, O3/H2O2 and O3/TiOz on clostridium perfringens. Ozone-Science & Engineering, 2008, 30 (6): 431-438.
  • 9Bradu C, Udrea I, Neata M, Mihalache N, M, Racoviteanu G, Vulpasu E. Catalytic Avramescu S oxidation of methyl tert-butyl ether with hydrogen peroxide from aqueous solutions. Revista De Chimie, 2009, 60 (3) : 252- 257.
  • 10Moussavi G, Yazdanbakhsh A, Heidarizad M. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment. Journal of Hazardous Materials, 2009, 171 (1/2/3): 907-913.

共引文献11

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部