期刊文献+

黄河口不同恢复阶段湿地土壤N_2O产生的不同过程及贡献 被引量:14

Contribution of Different Processes in Wetland Soil N_2O Production in Different Restoration Phases of the Yellow River Estuary,China
原文传递
导出
摘要 采用时空替代法,选择黄河口生态恢复前后未恢复区(R0)、2007年恢复区(R2007)和2002年恢复区(R2002)的芦苇湿地为研究对象,分析了生态恢复工程对湿地土壤N2O产生不同过程与贡献的影响.结果表明,尽管不同恢复阶段湿地土壤N2O总产生量差异明显,但总体均表现为N2O释放.恢复区湿地土壤的N2O产生量大于未恢复区.N2O的产生主要以硝化作用和硝化细菌反硝化作用为主,而反硝化作用对N2O的产生有较大削弱作用,这与不同恢复阶段湿地土壤理化性质密切相关.非生物作用对N2O产生量贡献较大,这与黄河口为高活性铁区,Fe的还原作用关系密切.尽管黄河口不同恢复阶段湿地土壤N2O的产生是生物作用与非生物作用共同作用的结果,但由于非生物作用对N2O产生的影响较大,应受到特别关注.温度和水分对不同恢复阶段湿地土壤N2O产生过程的影响不尽一致,这与土壤微生物活性对温度和水分的响应差异有关.黄河口不同恢复阶段湿地土壤的N2O总产生量介于(0.37±0.08)~(9.75±7.64)nmol·(kg·h)-1,略高于闽江口互花米草湿地的N2O总产生量,但明显低于富氧森林土壤、草原土壤和闽江口短叶茳芏湿地的N2O总产生量.研究发现,黄河口生态恢复工程的长期实施明显促进了N2O的产生,因而下一步生态恢复工程应统筹考虑景观恢复与温室气体削弱这两方面因素. By using the method of time-space mutual substitution,the contribution of different processes in wetland soil N2 O production was studied in the un-restoration wetland(R0),restoration wetland since 2007(R2007) and restoration wetland since 2002(R2002) of the Yellow River estuary to evaluate the effectiveness of the restoration projects. Results showed wetland soil total N2 O production had a significant difference in different restoration phases,but the N2 O release was the main source. The N2 O production in restoration wetland was higher than that in un-restoration wetland. The N2 O production was mainly due to the nitrification and nitrifier denitrification processes,while the denitrification process had great weakening effects on N2 O production,which was closely related to the physical and chemical properties of wetland soils in different restoration phases. The non-biological processes made greater contributions to N2 O production and these were mainly due to that iron was reductive,while the Yellow River estuary was an area of highly active iron. Although N2 O production in wetland soils was the results of biological processes combined with non-biological processes in different restoration phases,non-biological processes had larger influences and should be paid a special attention. There were different influences on wetland soil processes generating N2 O between temperature and water content,indicating responses of soil microbial activities to temperature and water content were different. In addition,the N2 O production contents ranged from 0. 37 ± 0. 08nmol·(kg·h)^-1 to 9. 75 ± 7. 64 nmol·(kg·h)^- 1 in marshes of the Yellow River estuary,which was slightly higher than those in the S.alterniflora wetland soils of the Min River estuary,but significantly lower than those in the C. malaccensis wetland soils of the Min River estuary,the grassland soils and the aerobic forest soils. We found that the long-term implements of ecological restoration projectin the Yellow River estuary obviously promoted N2 O production,so we should consider two factors of landscape restoration and weakening greenhouse gases in the next wetland restoration project.
出处 《环境科学》 EI CAS CSCD 北大核心 2014年第8期3110-3119,共10页 Environmental Science
基金 国家自然科学基金项目(41171424 41371104) 中国科学院"一三五"规划生态突破项目(Y254021031) 中国科学院重点部署项目(KZZD-EW-14) 中国科学院人才专项(Y129091041)
关键词 生态恢复 芦苇湿地 硝化反硝化作用 非生物作用 黄河口 ecological restoration Phragmites australis marshes nitrification-denitrification non-biological processes Yellow River estuary
  • 相关文献

参考文献41

  • 1Wang W C, Yung Y L, Lacis A A, et al. Greenhouse effects due to man-made perturbations of trace gases [ J ]. Science, 1976, 19,:1(4266) : 685-690.
  • 2Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere[ A]. In: Bouwman A F. Soiland thegreenhouse effect, proceedings of the international conference on soils and the greenhouse effect[ M ]. Chichester: John Wiley and Sons, 1990. 61-127.
  • 3孙志高,刘景双,杨继松,李新华,周旺明.三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放[J].应用生态学报,2007,18(1):185-192. 被引量:57
  • 4蔡延江,丁维新,项剑.土壤N_2O和NO产生机制研究进展[J].土壤,2012,44(5):712-718. 被引量:49
  • 5吴德礼,傅旻瑜,马鲁铭.生物及化学反硝化过程中N_2O的产生与控制[J].化学进展,2012,24(10):2054-2061. 被引量:7
  • 6Shingo U, Chun-Sim U G, Takahito Y, et al. Dynamics of dissolved O2, CO2 , CH4 and NzO in a tropical coastal swamp in southern Thailand [ J ]. Biogeochemistry, 2000, 49 ( 3 ) : 191- 215.
  • 7Mufioz-Hincapi6 M, Morell J M, Corredor J E. Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments[ J]. Marine Pollution Bulletin, 2002, 44 (10) : 992-996.
  • 8Gregorich E G, Hopkins D W, Elberling B, et al. Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley[ J]. Soil Biology and Biochemistry, 2006, 38 ( 10 ) : 3120-3129.
  • 9Wang D Q, Chen Z L, Wang J, et al. Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary[ J]. Estuarlne, Coastal and Shelf Science, 2007. 73(1-2) : 43-53.
  • 10徐继荣,王友绍,殷建平,王清吉,张凤琴,何磊,孙翠慈.珠江口入海河段DIN形态转化与硝化和反硝化作用[J].环境科学学报,2005,25(5):686-692. 被引量:70

二级参考文献293

共引文献607

同被引文献295

引证文献14

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部