期刊文献+

一种新的求解多目标问题的分组粒子群优化算法

A New Divisional PSO Algorithm for Solving Multi-objective Optimization
下载PDF
导出
摘要 用粒子群优化算法求解多目标问题容易陷入局部最优,为此本文提出了一种分组粒子群多目标优化算法。该算法将决策空间分成Q个子空间,每个子空间随机的分配N个粒子,这Q个粒子群分别在各自的空间进行独立搜索。为保证每个种群的搜索多样性和遍历性,用混沌序列对各组粒子位置进行初始化,同时对各组进行基于聚集距离的粒子择优进化。由典型多目标函数的优化实验结果表明,经过适当的分组,该算法能迅速逼近非劣最优解集,效果令人满意。 In order to solve the problem that it is easily plunged into local optima to use particle swarm optimization ( PSO) al-gorithm for multi-objective problem, this paper proposes a divisional PSO algorithm, named MODPSO.This algorithm divide func-tion domain into Q subspaces, each subspace will be randomly allocated N particles.These Q particle swarm search independently in their own space respectively.In order to guarantee each species'diversity and ergodicity of searching, chaotic sequence and crowding distance is used to initiate individual position and select the best individual .By proper dividing, experimental results on several typical multi-objective function show that the algorithm can rapidly find the Pareto optimal which is quite satisfactory .
出处 《安庆师范学院学报(自然科学版)》 2014年第2期28-32,52,共6页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省高等学校省级自然科学研究项目(KJ2012B082) 安庆师范学院青年科研项目(KJ201217)资助
关键词 粒子群优化 分组 多目标优化 非劣最优解 particle swarm optimization division multi-objective optimization Pareto optimal
  • 相关文献

参考文献7

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization[ M]. Neural Networks, 1995 Proceedings, IEEE International Conference, 1995 : 1942 - 1948.
  • 2张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 3Fieldsend J E, Singh s. A muhiobjective algorithm based upon particle SWalTU optimization:An efficient data structure and tur- bulence[ C]//Proceedings of the 2002 UK Workshop on Compu- tational Intelligence, Birmingham , UK ,2002:37 - 44.
  • 4Li X. A non' dominated sorting particle swarm optimizer for mul- tiobjective optimization [ M ]. In : CantO--Paz E, Foster JA, Deb K,Lawrence D,Roy R,eds. Proc. of the Genetic and Evolutionary Computation Cone, GECCO 2003, Berlin: Springer - Verlag, 2003:37 - 48.
  • 5李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:54
  • 6赵志刚,李陶深,杨林峰.求多目标优化问题的粒子群优化算法[J].计算机工程与应用,2009,45(29):37-40. 被引量:11
  • 7吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2005:24-25.

二级参考文献39

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:54
  • 3Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks.Piscataway, NJ : IEEE Service Center, 1995,4 : 1942-1948.
  • 4Hu X,Eberhart R C.Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]//Proceedings of the IEEE World Congress on Computational Intelligence, Hawaii,USA, 2002 : 1666-1670.
  • 5Hu X,Eberhart R C,Shi Y.Particle swarm with extended memory for multiobjective optimization[C]//IEEE Swarm Intelligence Symposium 2003, Indianapolis, IN, USA, 2003.
  • 6Fieldsend J E,Singh S.A muhiobjective algorithm based upon particle swarm optimization:An efficient data structure and turbulence[C]//Proceedings of the 2002 UK Workshop on Computational Intelligence, Birmingham, UK, 2002 : 37-44.
  • 7Mostaghim S,Teich J R.Strategies for finding local guides in multi-objective particle swarm optimization(MOPSO)[C]//Proceedings of the IEEE Swarm Intelligence Symposium 2003(SIS2003),Indianapolis,Indiana, USA, 2003 : 26-33.
  • 8Coello C A,Lechuga M S.MOPSO:A proposal for multiple objective particle swarm optimization[C]//Proeeedings of the IEEE Congress on Evolutionary Computation(CEC 2002),Honolulu,Hawaii,USA, 2002.
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence, 1998:69-73.
  • 10He S,Wu Q H,Wen J Y,et al.A particle swarm optimizer with passive congregation[J].Biosystems,2004,78: 135-147.

共引文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部