摘要
用粒子群优化算法求解多目标问题容易陷入局部最优,为此本文提出了一种分组粒子群多目标优化算法。该算法将决策空间分成Q个子空间,每个子空间随机的分配N个粒子,这Q个粒子群分别在各自的空间进行独立搜索。为保证每个种群的搜索多样性和遍历性,用混沌序列对各组粒子位置进行初始化,同时对各组进行基于聚集距离的粒子择优进化。由典型多目标函数的优化实验结果表明,经过适当的分组,该算法能迅速逼近非劣最优解集,效果令人满意。
In order to solve the problem that it is easily plunged into local optima to use particle swarm optimization ( PSO) al-gorithm for multi-objective problem, this paper proposes a divisional PSO algorithm, named MODPSO.This algorithm divide func-tion domain into Q subspaces, each subspace will be randomly allocated N particles.These Q particle swarm search independently in their own space respectively.In order to guarantee each species'diversity and ergodicity of searching, chaotic sequence and crowding distance is used to initiate individual position and select the best individual .By proper dividing, experimental results on several typical multi-objective function show that the algorithm can rapidly find the Pareto optimal which is quite satisfactory .
出处
《安庆师范学院学报(自然科学版)》
2014年第2期28-32,52,共6页
Journal of Anqing Teachers College(Natural Science Edition)
基金
安徽省高等学校省级自然科学研究项目(KJ2012B082)
安庆师范学院青年科研项目(KJ201217)资助
关键词
粒子群优化
分组
多目标优化
非劣最优解
particle swarm optimization
division
multi-objective optimization
Pareto optimal