期刊文献+

模糊核空间下高速公路路面裂缝智能识别与评价 被引量:5

Intelligent Recognition and Evaluation of Highway Pavement Cracks in Fuzzy Kernel Space
原文传递
导出
摘要 为实现大规模高速公路路面裂缝快速精确识别和评价,提出了模糊核空间下的高速公路路面裂缝识别与评价模型。将裂缝的影像栅格数据空间转换到核空间,在高维空间中,构建了模糊识别策略,根据裂缝和路面的不同特征设计了加权模糊SVM二分类识别方法,最后设计了基于核理论的裂缝损伤评价指标(KPCI)。理论分析和试验结果显示在模糊核空间中进行路面裂缝的识别和评价更客观,识别精度更高。 In order to obtain quickly and accurately identify and evaluate the highway pavement cracks, a new identification and evaluation model for highway pavement cracks is designed in fuzzy kernel space. The cracks image data is transformed from pixel space to kernel space. In the high dimensional space, the fuzzy identification strategy is designed to get the weighted fuzzy SVM binary classification identification method according to the different features of cracks and pavement. Finally, the crack damage evaluation index is designed based on fuzzy kernel space (KPCI). Both the theoretical analysis and experimental results show that it is more objective to pavement crack identification and evaluation the fuzzy kernel space, and the recognition accuracy is higher.
出处 《公路》 北大核心 2014年第2期180-184,共5页 Highway
基金 长江学者和创新团队发展计划资助IRT 1050 项目编号1050 中央高校基本科研业务费专项资金项目 项目编号CHD2011JC011 CHD2011JC085
关键词 核空间 路面裂缝 模糊识别 道路工程 kernel space pavement crack fuzzy recognition road engineering
  • 相关文献

参考文献11

二级参考文献59

共引文献72

同被引文献54

  • 1许亚男,陈竹安,杨波,夏元平.无人机低空遥感技术在道路安全监测及修复中的应用[J].东华理工大学学报(自然科学版),2020,43(1):90-95. 被引量:19
  • 2郭磊,徐友春,李克强,连小珉.基于单目视觉的实时测距方法研究[J].中国图象图形学报,2006,11(1):74-81. 被引量:98
  • 3孙伟杰.浅谈镜头焦距技术对画面造型的影响[J].现代电影技术,2007(4):24-29. 被引量:1
  • 4刘志强,温华.基于单目视觉的车辆碰撞预警系统[J].计算机应用,2007,27(8):2056-2058. 被引量:12
  • 5Salman M,Mathavan S.Pavement crack detection using the Gabor filter[C]//IEEE Annual Conference on Intelligent Transportation Systems,2013:2039-2044.
  • 6Henrique Oliveira.Automatic road crack detection and characterization[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(1):155-168.
  • 7Liu F,Xu G,Yang Y,et al.Novel approach to pavement cracking automatic detection based on segment extending[C]//IEEE Proceedings of International Symposium on Knowledge Acquisition and Modeling,2008:610-614.
  • 8Radhakrishna Achanta,Sheila Hemami.Frequency-tuned salient region detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2009:1597-1604.
  • 9Marr D.Vision:A computational investigation into the human representation and processing of visual information[M].San Francisco,1982.
  • 10Yamaguchi T,Hashimoto S.Improved percolation-based method for crack detection in concrete surface images[C]//International Conference on Pattern Recognition,2008:1-4.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部