期刊文献+

震荡小球在不可压缩流体介质中产生扰动场的理论分析 被引量:2

A THEORETICAL ANALYSIS OF THE FLOW DISTURBANCE INDUCED BY A SPHERE OSCILLATING IN INCOMPRESSIBLE FLUID
下载PDF
导出
摘要 为了改进基于不可压缩流场的声类比法的气动声数值预测方法,首先要明确扰动在可压缩和不可压缩流体媒介中的传播特性.推导了震荡小球在不可压缩流体中产生的小扰动的理论解,分析其速度场与压力场的特点,并与可压缩情况的解进行比较.结果显示,速度场中包含传播速度为无穷大和有限值的分量:而压力场只有传播速度为无穷大的分量.当流体黏性趋于零或小球震荡频率趋于无穷大时,其流场与经典声学中震荡小球声辐射问题的近场声一致,这表明震荡小球产生的近场扰动为不可压缩流场,即伪声. In order to improve the prediction method of the aerodynamic noise using the acoustic analogy theory based on incompressible flow fields, the characteristics of the disturbance propagation in the incompressible and compressible fluids should be studied firstly. In this paper, the analytical solution for the flow disturbance generated by a sphere oscillating in an incompressible fluid is obtained. The velocity and pressure fields are analyzed, and are compared to the results in a compressible fluid, namely, the acoustic field. It is shown that with respect to the velocity fields the disturbance has components with infinite and finite propagating speeds, while with respect to the pressure only disturbance with infinite propagating speed exists. When the fluid viscosity vanishes or the oscillating frequency becomes infinite, the velocity is identical to the near-field sound generated by the sphere oscillating in the compressible fluid; thus the acoustic near-field disturbance is incompressible, i.e., the pseudo-sound.
出处 《力学与实践》 北大核心 2014年第3期298-302,共5页 Mechanics in Engineering
基金 国家自然科学基金(51306163) 浙江省自然科学基金(LQ13E060001)资助项目
关键词 不可压缩流体 振荡小球 小扰动 伪声 incompressible fluid, oscillating sphere, disturbance, pseudo-sound
  • 相关文献

参考文献11

  • 1Wang CY.Exact solutions of the unsteady Navier-Stokes equations.Applied Mechanics Reviews,1989,42 (11):269-282.
  • 2Wang CY.Exact solutions of the steady-state Navier-Stokes equations.Annual Review of Fluid Mechanics,1991,23 (1):159-177.
  • 3Lighthill M.On sound generated aerodynamically.I.General theory.Proceedings of the Royal Society of London Series A,Mathematical and Physical Sciences,1952,211 (1107):564-587.
  • 4Crighton DG.Acoustics as a branch of fluid mechanics.Journal of Fluid Mechanics Digital Archive,1981,106 (1):261-298.
  • 5Howe M.Theory of Vortex Sound.Cambridge:Cambridge University Press,2003.
  • 6Curle N.The influence of solid boundaries upon aerodynamic sound.Proc R Soc Lond A,1955,231 (1187):505-514.
  • 7Ffowcs WJ,Hawkings D.Sound generation by turbulence and surfaces in arbitrary motion.Royal Society of London Philosophical Transactions Series A,1969,264 (1151):321-342.
  • 8Powell A.Theory of vortex sound.The Journal of the Acoustical Society of America,1964,36 (1):177-195.
  • 9居鸿宾,沈孟育.计算气动声学的问题、方法与进展[J].力学与实践,1995,17(5):1-10. 被引量:15
  • 10Fahy F.Foundations of Engineering Acoustics.London:Academic Press,2001.

共引文献14

同被引文献30

  • 1Wang M, Freund J, Lele S. Computational prediction of flow-generated sound. Annual Review of Fluid Mechanics, 2006; 38(1): 483- 512.
  • 2Lyrintzis A. Surface integral methods in computational aeroacoustics-from the (CFD) near-field to the (Acous- tic) far-field. International Journal of Aeroacoustics, 2003; 2(2): 95 -128.
  • 3Lighthill M. On sound generated aerodynamically. I. Gen- eral theory. Proceedings of the Royal Society of Lon- don Series A, Mathematical and Physical Sciences, 1952; 211(1107): 564--587.
  • 4Curle N. The influence of solid boundaries upon aerody- namic sound. Proceedings of the Royal Society of Lon- don Series A, Mathematical and Physical Sciences, 1955; 231(1187): 505- 514.
  • 5Ffowcs Williams J, Hawkings D. Sound generation by tur- bulence and surfaces in arbitrary motion. Royal Society of London Philosophical Transactions Series A Mathematical and Physical Science, 1969; 264(1151): 321--342.
  • 6Cox J S, Brentner K S, Rumsey C L. Computation of vortex shedding and radiated sound for a circular cylinder: sub- critical to transcritical Reynolds numbers. Theoretical and Computational Fluid Dynamics, 1998; 12(4): 233- 253.
  • 7Inoue O, Hatakeyama N. Sound generation by a two- dimensional circular cylinder in a uniform flow. Journal of Fluid Mechanics, 2002; 471(1): 285--314.
  • 8Ali I, Escobar M, Kaltenbacher Met al. Time domain computation of flow induced sound. Computers & Fluids, 2008; 37(4): 349-359.
  • 9Gloerfelt X, Perot F, Bailly C et al. Flow-induced cylin- der noise formulated as a diffraction problem for low Mach numbers. Journal of Sound and Vibration, 2005; 287(1- 2): 129-151.
  • 10Revell J D, Prydz R A, Hays A P. Experimental study of aerodynamic noise vs drag relationships for circular cylin- ders. AIAA Journal, 1978; 16(9): 889-897.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部