摘要
悬链在自由端受到冲击后的瞬态响应,不仅是一个有趣的数学问题,同时也具有一定的工程意义.在拉格朗日动力学微分方程的理论框架下,引入广义冲量并利用第二类拉格朗日方程对悬链在自由端受水平冲击力后的动力学响应进行了分析,得到了计算每节链段角速度的统一公式.应用该公式能够方便地求解不同初始条件下具有较多链段数目的悬链在冲击作用下的瞬态响应问题.
The transient response of a hanging chain after an initial impact at the free end, is not only an interesting mathematical problem, but also has a certain engineering application. In the theoretical frame of the Lagrange dynamics differential equation, the dynamic response of a hanging chain under the impact of a horizontal impulse-momentum S is analyzed by using the second kind Lagrange's equations under a generalized impulse-momentum, and a general solution is obtained to compute the angu:tar velocity of each segment. This method can be used conveniently to obtain the transient response of a hanging chain with several segments and in different initial conditions.
出处
《力学与实践》
北大核心
2014年第3期337-340,共4页
Mechanics in Engineering
关键词
悬链
拉格朗日方程
广义冲量
瞬态响应
anging chain, Lagrange equations, generalized impulse-momentum, transient response