期刊文献+

基于多向核熵偏最小二乘的间歇过程监测及质量预测 被引量:2

Batch Process Monitoring and Quality Prediction Based on Multi-way Kernel Entropy PLS
下载PDF
导出
摘要 针对间歇过程数据的批次不等长和强非线性的特点,结合核偏最小二乘和核熵分析,提出了多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)的过程监测及质量预测方法.该方法将三维历史数据沿新的展开方式展开,克服了批次不等长和数据缺失的问题,通过核映射将过程数据从低维输入空间映射到高维特征空间,实现变量之间非线性相关关系的线性转换,解决了数据的非线性特性;根据核熵的大小将特征值和特征向量进行排序并对数据进行降维,弥补了MKPLS方法只按照数据特征值的最大化进行降维的不足.同时,引入核特征提取算法降低核空间的计算量,使其能够在线应用.数值实例和实际工业过程数据的验证效果表明:MKEPLS方法不仅能对故障进行有效监控,提高故障的报警率,同时还能对最终产品质量进行预测. Aiming at the nonlinear, unequal length of the data in the batch processes, a multi-way entropy partial least squares (MKEPLS) process monitoring and quality prediction method was proposed combining with kernel partial least squares and kernel entropy analysis. The method solved the unequal length and missing data problem by expanding the original three-dimensional data in a new unfolding way, and the nonlinear character of the data could also be solved through the kernel mapping process, which mapped the data from low dimensional input space into a high dimensional feature space to achieve the nonlinear relationship between variables linear transformation. Then, the data dimensionality reduction was conducted according to the kernel entropy eigenvalues and eigenveetors, which made up the shortcomings in MKPLS method. Moreover, the kernel feature extraction algorithm was introduced to reduce the computational kernel space to enable the online applications of MKEPLS. The numerical examples and practical industrial process data performance show that MKEPLS method can monitor the fault effectively, improve the fault alarm rate, and predict the quality of the final product at the same time.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2014年第6期851-856,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61174109) 高等学校博士学科点专项科研基金资助项目(20101103110009)
关键词 间歇过程 多向核熵偏最小二乘 过程监测 质量预测 batch process multi-way kernel entropy partial least squares (MKEPLS) process monitoring quality prediction
  • 相关文献

参考文献16

  • 1ROOP R, SHI Zhen-qi. Application of principal component analysis (PCA) to evaluating the deformation behaviors of pharmaceutical powders [J]. Journal of Pharmaceutical Innovation, 2013, 82 : 121-130.
  • 2WU Jia, LUO Wei, WANG Xue-kai. A new application of WT-ANN method to control the preparation process of met form in hydrochloride tablets by near infrared spectroscopy compared to PLS [J]. Pharmceutical and Biomedical Analysis, 2013, 80(1): 186-191.
  • 3GEERT G, JEF V, JAN F. Discriminating between critical and noncritical disturbances in (Bio) chemical bach processes using multi-model fault detection and end-quality prediction [ J ]. Industrial and Engineering Chemistry Research, 2012, 51: 12375-12385.
  • 4NAES T, TOMIC O. Multi-block regression based on combination so for thogonalisation, PLS regressionand canonical correlation analysis [ J ]. Chemometrics and Intelligent Laboratory Systems, 2013, 124 : 32-42.
  • 5ZHANG Ying-wei, HU Zhi-yong. Multivariate process monitoring and analysis based on multi-scale KPLS [ J]. Chemical Engineering Research & Design, 2011, 89 (12) : 2667-2678.
  • 6ZHANG Ying-wei, AN Jia-yu, LI Zhi-ming. Modeling and monitoring for handling nonlinear dynamic processes [ J ]. Information Sciences, 2013, 235: 97-105.
  • 7ZHANG Ying-wei, TENG Yong-dong, ZHANG Yang. Complex process quality prediction using modifies kernel partial least squares [ J ]. Chemical Engineer Science, 2010, 65: 2153-2158.
  • 8ROSIPAL R, TREJ O, LI J. Kernel partial least squares regression in reproducing kernel Hilbert space[ J]. Journal of Machine Learning Research, 2001, 2(6): 97-123.
  • 9LI Xiaoguang XIA Qing ZHUO Li.A KPLS-Eigentransformation Model Based Face Hallucination Algorithm[J].Chinese Journal of Electronics,2012,21(4):683-686. 被引量:2
  • 10JENSSEN R. Kernel entropy component analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5) : 847-860.

二级参考文献14

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2AGUADO D, FERRER A. Multivariate SPC of a sequencing batch reactor for wastewater treatment [ J ]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1) : 82-93.
  • 3CHEN J, CHEN H H. On-line batch process monitoring using MHMT-based MPCA [ J]. Chemical Engineering Science, 2006, 61(10): 3223-3239.
  • 4CAMACHO J, PICO J. Multi-phase principal component analysis for batch processes modeling [ J]. Chemometrics and Intelligent Laboratory Systems, 2006, 81 (2) : 127- :136.
  • 5RANNAR S, MACGREGOR J F, WOLD S. Adaptive batch monitoring using hierarchical PCA [ J ]. Chemometrics and Intelligent Laboratory Systems, 1998, 41(1): 73-81.
  • 6LU N, GAO F, WANG F. Sub-PCA modeling and on-line monitoring strategy for batch processes [ J ]. AIChE Journal, 2004, 50( 1): 255-259.
  • 7YU J, QIN S J. Multiway Gaussian mixture model based muhiphase batch process monitoring [ J]. Ind Eng Chem Res, 2009, 48(18) : 8585-8594.
  • 8YU J, QIN S J. Multimode process monitoring with Bayesian inference - based finite Gaussian mixture models [J]. AIChE Journal, 2008, 54(7): 1811-1829.
  • 9RAMAKER H J, ERIC N M, JOHAN A W, et al. Dynamic time warping of spectroscopic batch data [ J ]. Analytica Chimica Acta, 2003, 498(1/2) : 133-153.
  • 10SRINIVASAN R, QIAN M S. Online fauh diagnosis and state identification during process transitions using dynamic locus analysis [ J ]. Chemical Engineering Science, 2006, 61(18) : 6109-6132.

共引文献10

同被引文献22

  • 1CHEN J H, WANG W Y. Performance monitoring of MPCA based control for muhivariable batch control processes [ J ]. Taiwan Institute of Chemical Engineers, 2010, 41(4) : 465-474.
  • 2DARWISH H W, ATTIA M I, ABDELHAMMEED A S, et al. Comparative ANNs with different input layers and GA- PLS study for simultaneous spectrofluorimetric determination of melatonin and pyridoxine HC1 in the presence of melatonin's main impurity [ J ]. Molecules, 2013, 18(1) : 974-996.
  • 3GEERT G, JEF V, JAN F. Discriminating between critical and nncritical disturbances in (Bio) chemical bach processes prediction Research, NAES T, using m [J]. ulti-model fault detection and end-quality Industrial and Engineering Chemistry 2012, 51(1) : 1237-1238.
  • 4TOMIC O. Multi-block regression based on combination so for thogonalisation, PLS regressionand canonical correlation analysis [ J ]. Chemometrics and Intelligent Laboratory Systems, 2013, 124: 32-42.
  • 5CHOI S W, LEE I B. Mutilblock PLS based localized process diagnosis[ J]. Journal of Process Control, 2005, 3 ( 1 ) .. 295-306.
  • 6MORI J C, YU J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non- Gaussian latent subspace projection approach [ J]. Journal of Process Control, 2014, 24 ( 1 ) : 57-71.
  • 7ZHANG Y W, HU Z Y. Multivariate process monitoring and analysis based on multi-scale KPLS [ J ]. Chemical Engineering Research & Design, 2011, 89 (12): 2667- 2678.
  • 8ZHANG Y W, AN J Y, LI Z M. Modeling and monitoring for handling nonlinear dynamic processes [ J ]. Information Sciences, Chemical Engineer Science, 2013, 235(20) : 97-105.
  • 9ZHANG Y W, TENG Y D, ZHANG Y. Complex process quality prediction using modifies kernel partial least squares[J]. Chemical Engineer Science, 2010, 65(1) : 2153- 2158.
  • 10ZHANG X, YAN W, SHAO H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares [ J ] Industrial and Engineering Chemistry Research, 2008, 47(1) : 1120-1131.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部