期刊文献+

沪深300股指期货的风险测度模型研究 被引量:7

Backtesting Risk Models for CSI300 Index Futures
原文传递
导出
摘要 以沪深300股指期货指数的30分钟交易数据为例,首先对其价格变化的动力学特征及波动模式进行了全面深入的考察,然后运用严谨系统的后验分析(Backtesting analysis)方法,分别在多头和空头两种头寸状况以及5种不同分位数水平下,实证对比了8种风险测度模型对VaR(Value at Risk)和ES(Excepted shortfall)两种不同风险指标估计的精度差异。研究结果表明:我国股指期货市场的价格波动具有较为明显的有偏和尖峰厚尾分布、聚集特征和长记忆性;采用有偏学生t分布和长记忆模型有助于提高对沪深300股指期货的风险测度精度,而在波动模型中包含杠杆效应项对提高风险估计精度并无太多帮助;在综合考虑了模型对沪深300股指期货价格变化动力学的刻画效果以及对不同风险指标的测度精度等因素后,基于有偏学生t分布的GARCH模型是一个相对合理的风险测度模型选择。 Take 30-minutes data of CSI300 index as sample, this paper carries out VaR and ES predicting for eight risk models. Furthermore, backtesting methodologies are introduced to estimate the accuracy for VaR and ES predictions produced by different models. The main results show that there is significant leverage effect and long memory in price volatility of CSI300 and clear skewness and fat-tail are observed. Skewed student-t distribution is helpful to improve results in estimating VaR and ES of CSI300. In addition, GARCH model with skewed student-t distribution is moderately good in overall considering of description efficiency and estimation accuracy to extreme risk.
出处 《数理统计与管理》 CSSCI 北大核心 2014年第4期724-733,共10页 Journal of Applied Statistics and Management
基金 国家自然科学基金(71101119) 西南财经大学和四川省教育厅创新团队建设项目(JBK130401)
关键词 沪深300股指期货 VAR ES 有偏学生t分布 后验分析 CSI300 index futures, VaR, ES, skewed student-t distribution, backtesting analysis
  • 相关文献

参考文献20

二级参考文献90

共引文献321

同被引文献56

  • 1龙博,龙传文.股指期货价格发现功能的实证研究[J].统计与决策,2007,23(15):117-118. 被引量:5
  • 2叶五一,缪柏其,吴振翔.基于收益率修正分布的VaR估计[J].数理统计与管理,2007,26(5):867-874. 被引量:3
  • 3Mandelbrot B. The variation of certain speculative prices [J]. The Journal of Business, 1963, 36(4): 394-419.
  • 4Fama E. The behavior of stock market prices [J]. Jour- nal of Business, 1965, 38(1): 34-105.
  • 5Hagerman R. More evidence on the distribution of secu- rity returns [J], Journal of Finance, 1978, 33(4) : 1213 -1221.
  • 6McDonald J B, Newey W K. Partially adaptive estima- tion of regression models via the generalized t distribu- tion [J]. Econometric Theory, 1988, 4(3): 428-457.
  • 7Hansen B. Autoregressive conditional density estimation [J]. International Economic Review, 1994, 35(3): 705 -730.
  • 8Theodossiou P. Financial data and the skewed general- ized t distribution [J]. Management Science, 1998, 44 (12): 1650-1661.
  • 9Cappueeio N, Lubian D, Raggi D. MCMC Bayesian es- timation of a skew-GED stochastic volatility model [J]. Studies in Nonlinear Dynamics and Econometrics, 2004, 8(2) : 1558-3708.
  • 10Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom in- flation I-J]. Econometrica, 1982, 50(4): 987-1007.

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部