期刊文献+

几类效应代数的张量积及其可表示性 被引量:1

Tensor products of several effect algebras and their representability
下载PDF
导出
摘要 研究了几类效应代数的张量积及其可表示性.证明了两个效应代数关于不同的双态射的张量积是同构的,通过构造适当的双态射,给出效应代数{0,1}E、Cm(a)Cn(b)、C2(x)C4(y,z)及C2(x)C′4(y,z)的具体形式,结果表明:{0,1}E是可表示的当且仅当E是可表示的,Cm(a)Cn(b)与C2(x)C4(y,z)都是可表示的效应代数,但C2(x)C′4(y,z)是不可表示的效应代数. Tensor products of several effect algebras and their representability are discussed.It is proved that any two tensor products of two effect algebras with respect to different bi-morphisms are isomorphic.By constructing proper bi-morphisms,the tensor products of effect algebras{0,1}and E,Cm(a)and Cn (b),C2 (x)and C4 (y,z),C2 (x)and C′4 (y,z)are given.Obtained results show that {0,1}E is representable if and only if E is representable,both Cm(a)Cn(b)and C2 (x)C4 (y,z)are representable,but C2 (x)C′4 (y,z)is not representable.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期1-5,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11371012 11171197)
关键词 效应代数 张量积 可表示性 tensor product effect algebra representability
  • 相关文献

参考文献15

  • 1Foulis D J, Bennett M K. Effect algebras and unsharp - --J quantum logics [J]. Foundations of Physics, 1994, 24(10): 1331-1352.
  • 2Gudder S. Examples problems and results in effect alge- bras [J]. IntenLational Journal of Theory Physics, 1996, 35(11): 2365-2376.
  • 3Moreland T, Gucder S. Infima of Hilbert space effects rJ]. Linear Algebra and its Applications, 1999, 286(1/ 3) : 1-17.
  • 4Gudder S. Lattice properties of quantum effects [J]. Journal of Mathe:natical Physics, 1996, 37 (6) : 2637- 2642.
  • 5Bugajski S, Gudcer S, Pulmanno% S. Convex effect al- gebras, state ordered effect algebras, and ordered linear spaces [J]. Journal of Mathematical Physics, 2000, 45 (3) : 371-388.
  • 6Gudder S, Pulmannova S. Representation theorem for convex effect algebras [J]. Commentationes Mathemati- cae Universitatis Carolinae, 1998, 39(4): 645-659.
  • 7Gheondea A, Guider S. Sequential product of quantum effect l-J]. Proc_edings of the American Mathematical Society, 2004, 132(2) : 503-512.
  • 8Gheondea A, GJdder S, Jonas P. On the infimum of quantum effects [J]. Journal of Mathematical Physics, 2005, 46: 062102.
  • 9DU Hongke DENG Chunyuan LI Qihui.On the infimum problem of Hilbert space effects[J].Science China Mathematics,2006,49(4):545-556. 被引量:16
  • 10陆玲,曹怀信,陈峥立,银俊成.效应代数上态射的注记[J].数学学报(中文版),2009,52(5):957-960. 被引量:12

二级参考文献32

  • 1DU Hongke DENG Chunyuan LI Qihui.On the infimum problem of Hilbert space effects[J].Science China Mathematics,2006,49(4):545-556. 被引量:16
  • 2Zdenka RIE■ANOV.States on sharply dominating effect algebras[J].Science China Mathematics,2008,51(5):907-914. 被引量:1
  • 3杜鸿科,邓春源,李启慧.量子效应的下确界问题[J].中国科学(A辑),2006,36(3):320-332. 被引量:2
  • 4Bennett M. K., Foulis D. J., Interval and scale effect algebras, Adv. Appl. Math., 1997, 91: 200-215.
  • 5Foulis D. J., Bennett M. K., Effect algebra and unsharp quantum logics, International Journal of Theoretical Physics, 1994, 24: 1325-1346.
  • 6Gudder S., Greechie R., Uniqueness and order in sequential effect algebras, International Journal of Theoretical Physics, 2005, 44(7): 755-770.
  • 7Cudder S., Greechie R., Sequential products on effect algebras, Reports on Mathematical Physics, 2002, 49(1): 87-111.
  • 8Giuntini R., Greuling H., Toward a formal language for unsharp properties, Found. Phys, 1989, 19: 931-945.
  • 9[1]Moreland,T.,Gudder,S.,Infima of Hilbert space effects,Linear Algebra and Its Applications,1999,286:1-17.
  • 10[2]Kadison,R.,Order properties of bounded self-adjoint operators,Proc.Amer.Math.Soc.,1951,34:505-510.

共引文献27

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部