期刊文献+

基于惯性传感器和Kinect摄像机的OFCM图像匹配算法

OFCM Image Matching Algorithm Based on Inertia Sensor and Kinect Camera
下载PDF
导出
摘要 提出了一种基于图像三维信息及摄像机运动参数的图像匹配算法,用于解决智能监控系统中图像匹配实时性差、鲁棒性低等问题。该算法分别利用惯性传感器和Kinect摄像机估计出摄像机的运动外参矩阵和图像的深度信息,再根据射影几何原理,结合当前帧图像的像素坐标计算出该像素点在下帧图像的像素坐标,从而完成图像匹配。利用该算法对实际采集的图像序列进行了分析与处理,并从配准精度、鲁棒性和实时性方面与经典匹配算法KLT进行对比。实验结果表明:该算法极大地降低了计算量和计算时间,不仅能满足智能监控系统对图像匹配精度和稳定性的要求,更能满足系统实时性的要求。 In order to solve the problems of low real-time and robustness in intelligent monitoring,an image matching algorithm which is based on the three-dimensional information of the image and the motion parameters of the camera is put forward.The algorithm uses an Inertia sensor with magnetometer and a Kinect camera to estimate the camera's motion parameters and the depth information of the image respectively.Then based on the equation of photography geometry,the new pixel coordinates in the next frame are estimated by using the pixel coordinates in the current frame.Thus image matching is realized.The experiments are performed based on actual image data,and the results of the image matching are compared with KLT algorithm widely applied in image procession,in the aspect of registration accuracy,robustness and real-time.Conclusions indicate that the proposed algorithm,which reduces the computation time extremely,can meet the requirements of not only precision and stability but also real-time of intelligent monitoring systems.
出处 《半导体光电》 CAS CSCD 北大核心 2014年第4期713-717,721,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61271332) 江苏省"六大人才高峰"支持计划项目(2010-DZXX-022)
关键词 图像匹配 摄像机运动参数 惯性传感器 Kinect摄像机 实时性 image matching parameters of camera motion inertial sensor Kinect camera real-time
  • 相关文献

参考文献9

二级参考文献52

  • 1宋凝芳,张中刚,李立京,金靖.光纤陀螺随机游走系数的分析研究[J].中国惯性技术学报,2004,12(4):34-38. 被引量:17
  • 2朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4张延顺,房建成.小型动调陀螺随机误差建模与滤波方法研究[J].仪器仪表学报,2007,28(7):1286-1289. 被引量:8
  • 5Ribarie S, Adrinek G, Segvic S. Real Time Active Visual Tracking System// Proc of the 12th IEEE Mediterranean Electrotechnical Conference. Dubrovnik, Croatia, 2004, I : 231 -234.
  • 6Mittal A, Paragios N. Motion-Based Background Subtraction Using Adaptive Kernel Density Estimation// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ: 302 - 309.
  • 7Jodoin P M, Mignotte M, Konrad J. Statistical Background Subtraction Using Spatial Cues. IEEE Trans on Circuits and Systems for Video Technology, 2007, 17 ( 12 ) : 1758 - 1763.
  • 8McHugh J M, Konrad J, Saligrama V, et al. Foreground-Adaptive Background Subtraction. IEEE Signal Processing Letters, 2009, 16 (5) : 390 -393.
  • 9Xu Fengliang, Fujimura K. Human Detection Using Depth and Gray Images//Proc of the IEEE Conference on Advanced Video and Signal Based Surveillance. Santa Fe, USA, 2003 : 115 - 121.
  • 10Parviz E, Wu O M J. Multiple Object Tracking Based on Adaptive Depth Segmentation//Proc of the Canadian Conference on Computer and Robot Vision. Windsor, Canada, 2008 : 273 -277.

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部