期刊文献+

非连续Sturm-Liouville算子的谱分布及其逆特征值问题

The spectral distribution and the inverse eigenvalue problem for the discontinuous Sturm-Liouville operators
下载PDF
导出
摘要 研究了定义在[0,1]区间且在点t0∈(0,1)具有界面条件的Sturm-Liouville算子的特征值与定义在子区间[0,t0]与[t0,1]上的两个Sturum-Liouville算子的特征值分布及其逆特征值问题.利用Weyl-Titchmarsh-m-函数的单调性态,证明了这三组谱之间具有交错性关系,并证明了若子区间上的两组谱不相交,则可由这三组谱唯一确定势函数q(x)与边值条件中的参数h和H. The eigenvalue and the inverse eigenvalue problems of the Sturm-Liouville operators defined respectively on[0,1][0,t^0 ]and [t^0 ,1]are considered.By using the monotonicity of the Weyl-Titchmarsh-m-function,it is shown that the three spectra are alternate,and the potential q (x)and the parameters h,H in the boundary conditions can be uniquely determined by the three spectra if the spectra of the operators defined on subintervals are disjoint.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期1-5,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10771165) 陕西省教育厅科研计划项目(2013JK0563) 中央高校基本科研业务费专项资金项目(GK201304001)
关键词 STURM-LIOUVILLE算子 界面条件 特征值 Herglotz函数 逆特征值问题 Sturm-Liouville operator jump condition eigenvalue function of Herglotz the in-verse eigenvalue problem
  • 相关文献

参考文献12

  • 1Borg G. Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe[J]. Acta Mathematica, 1946, 78: 1- 96.
  • 2Hochstadt H, Lieberman B. An inverse Sturum-Li- ouville problems m ith mixed given data[J], Siam Journal on Applied Mathe:aaatics, 1978, 34(4):676-680.
  • 3Pivouarchik V N. An inverse Sturm-Liouville problems by three specta [j]. Integral Equations and Operator Theory, 1999, 34(2): 234-243.
  • 4Gesztesy F, Simon B. On the determination of a poten- tial from three specta[J]. American Mathematical Socie- ty Translations, 1999, 189(2):89-92.
  • 5杨莹,魏广生.基于不同边值条件的逆Sturm-Liouville问题[J].陕西师范大学学报(自然科学版),2013,41(4):20-23. 被引量:1
  • 6卞翠,魏广生.Sturm-Liouville逆结点问题的唯一确定性[J].陕西师范大学学报(自然科学版),2011,39(5):20-22. 被引量:3
  • 7Amirov R Kh. On Sturm-Liouville operators with dis- continuity conditions inside an interval[J]. Journal of Mathematical Analysis and Applications, 2006, 317(1): 163-176.
  • 8Gesztesy F, Kirch W. One-dimensional Schrodinger operators with interactions on a discreteset [J]. Journal of Pure Mathematics, 1985, 362: 28-50.
  • 9Hald O H. Discontinuous inverse eigenvalue problems [J]. Communications on Pure and Applied Mathemat- ics, 1984, 37(5).. 539-577.
  • 10Fu Shouzhong, Xu Zongben, Wei Guangsheng. The interlacing of spectra between continuous and discon- tinuous Sturm-Liouville problems and its application to inverse problems[J]. Taiwan Residents Journal of Mathemat- ics, 2012, 16(2): 651-663.

二级参考文献21

  • 1Hald O H, McLaughlin J R. Inverse problems using nodal position data-uniqueness results, algorithms, and bounds[C]//Proceedings of the centre for Mathematical Analysis, Special Program in Inverse Problems. Can- berra: Australian National University, 1988 : 32-58.
  • 2Hald O H, McLaughlin J R. Inverse problems: recover- y of BV coefficients from nodes[J]. Inverse Problems, 1998, 14(2): 245-273.
  • 3MeLaughlin J R. Inverse spectral theory using nodal points as data-a uniqueness result[J]. Journal of Dif- feretial Equation, 1988, 73(2); 354-362.
  • 4Hald O H, McLaughlin J R. Examples of inverse nodal problems[C]//Sabatier P C. Inverse Methods in Ac- tion. Berlin: Springer-Verlag, 1990: 147-151.
  • 5Kong Q, Zettl A. Eigenvalues of regular S-L problems [J]. Journal of Differential Equation, 1996, 131(1): 1-19.
  • 6Shen C L. On the nodal sets of eigenfunctions of the string equations[J]. SIAM Journal of Mathematical A- nalysis and Applications, 1988, 19(8): 1419-1424.
  • 7Shen C L,Tsai T M. On a uniform approximation of the density function of a string equation using EVs and nod- al points and related inverse nodal problems[J]. Inverse Problems, 1995, 11(5): 1113-1123.
  • 8Shen C L, Shieh C T. An inverse nodal problem for vec- torial Sturm-Liouville equation[J]. Inverse Problems, 2000, 16(2): 349-356.
  • 9Hald O H, McLaughlin J R. Solutions of inverse nodal problems[J]. Inverse Problems, 1988, 5(2): 307-342.
  • 10Yurko V A. Inverse problems for Sturm-Liouville dif- ferential operators on a star-type graph[J]. Siberian Mathematical Journal, 2009, 50(2): 373-378.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部