期刊文献+

时齐马氏链渐进性双曲方程稳定解存在性分析

Analysis of Hyperbolic Equations Stable Solutions Based on Time Homogeneous Markov Chain Progressive
下载PDF
导出
摘要 双曲方程的稳定解分析方法在现代数学应用中具有广泛的意义。采用时齐马氏链进行双曲方程稳定解存在性分析具有模型匹配度高的优点。构建时齐马氏链的双曲波动方程,设计自组织非光滑时滞的双曲系统,结合时齐马氏链渐进性条件下的Lyapunov-Krasovskii泛函算法,对时齐马氏链渐进性条件临界阈值确定,以有效分析双曲方程的稳定解存在性,提高并行算法处理效率,在一阶非光滑时滞系统中得到方向性时齐马氏链函数的分解特征。研究证明,时齐马氏链渐进性条件下,双曲方程存在稳定性解,解向量在有限时间内收敛。 Stable solutions analysis method is significant in modern mathematics application solutions to hyperbolic equa-tion stability. Using homogeneous Markov chain analysis of the existence of stable solutions of hyperbolic equations withmodel construction, and the matching rate is high. The hyperbolic wave equation of homogeneous Markov chain is construct-ed, the self organization design of non smooth delay hyperbolic systems are obtained, combined with Markov chain progres-sive Lyapunov-Krasovskii functional conditions, time homogeneous Markov chain progressive condition critical thresholdis determined, it can effectively analyze hyperbolic equations stable existence of parallel algorithm, improve processing effi-ciency. In order to get non smooth systems with time-delay are directional decomposition of homogeneous Markov chainfunction. Research shows that the time homogeneous Markov chain progressive condition is taken, it has existence and sta-bility for hyperbolic partial differential equations, the solution vector convergence is shown in finite time.
作者 李琳琳
出处 《科技通报》 北大核心 2014年第12期7-9,共3页 Bulletin of Science and Technology
关键词 双曲方程 马氏链 渐进性条件 稳定解 hyperbolic equation markov chain progressive condition stable solution
  • 相关文献

参考文献5

  • 1Bulut A. Global well-posedness and scattering for the defo-cusing energy-supercritical cubic nonlinear wave equation[J]. Journal of Functional Analysis,2012,253(2):605-627.
  • 2Killip R,Visan M. The defocusing energy- supercriticalnonlinear wave equation in three space dimensions[J].Trans Amer Math Soc,2011,363(7):3893-3934.
  • 3Tao T. Nonlinear dispersive equations[M]. Washington,DC: American Mathematical Society,2006.
  • 4陈国旺,侯长顺.一类四阶非线性波动方程的初值问题[J].应用数学和力学,2009,30(3):369-378. 被引量:7
  • 5程桂芳,丁志帅,慕小武.自治非光滑时滞系统的有限时间稳定[J].应用数学学报,2013,36(1):14-22. 被引量:14

二级参考文献20

  • 1Chen Xiangyingof Fundamental Courses,Zhengzhou Electric Power College,Zhengzhou 450004..EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS FOR NONLINEAR EVOLUTION EQUATION OF FOURTH ORDER[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(3):251-258. 被引量:4
  • 2慕小武,程桂芳,唐风军.非自治非光滑系统的Matrosov稳定性定理[J].应用数学学报,2007,30(1):168-175. 被引量:6
  • 3庄蔚 杨桂通.孤波在非线性弹性杆中的传播[J].应用数学与力学,1986,7(7):571-582.
  • 4张善元 庄蔚.非线性弹性杆中的应变孤波[J].力学学报,1988,20(1):58-66.
  • 5朱位秋.弹性杆中的非线性波[J].固体力学学报,1980,1(2):247-253.
  • 6Adrian Constantin,Luc Molinet. The initial value problem for a generalized Boussinesq equation[J]. Differential and Integral Equations, 2002,15(9) : 1061-1072.
  • 7CHEN Guo-wang, WANG Shu-bin. Existence and nonexistence of global solution for the generalized IMBq equation[J]. Nonlinear Analysis TMA, 1999,36( 8 ) : 961-980.
  • 8WANG Shu-bin, CHEN Guo-wang. Small amplitude solutions of the generalized IMBq equation[ J]. J Math Anal, 2002,274(2) : 845-856.
  • 9CHEN Guo-wang, WANG Shu-bin. Existence and nonexistence of global solution for nonlinear hyperbolic equations of higher order[J].Comment Math Univ Carolin, 1995,36(3) :475-487.
  • 10CHEN Xiang-ying, CHEN Guo-wang. Asymptotic behavior and blow-up of solutions to a nonlinear evolution equation of fourth orders[J]. Nonlinear Analysis TMA, 2008,68(4) : 892-904.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部