期刊文献+

无人机转角控制中的虚拟建模过程分析

Analysis of Virtual Modeling Process for Unmanned Aerial Vehicle Angle Control
下载PDF
导出
摘要 无人机转角控制是无人机飞行中的关键。由于在对无人机进行操控时,存在一定的时间滞后性,利用传统的基于虚拟现实技术开发的无人机转角控制系统没有考虑时间的滞后性因素带来的影响,使得训练效果达不到实际操控无人机的要求,导致在实际操控中提高了无人机的坠机风险。为此,提出一种基于虚拟现实技术优化算法的无人机转角控制方法,建立无人机转角控制模型,得到转角控制参数,利用得到的时间误差进行补偿,得到新的无人机转角状态模型,利用新模型能够实现对无人机转角的精确控制。仿真实验结果表明,利用基于虚拟现实技术优化算法的无人机转角控制方法能够对无人机转角进行精确控制,效果令人满意。 the unmanned aerial vehicle (UAV) Angle control is the key in the unmanned aerial vehicle UAV) flight. Becauseduring the control of unmanned aerial vehicle (UAV), has a certain amount of time lag, using the traditional uav Angle con-trol system based on virtual reality technology development without considering the time lag factors on the impact of thetraining effect could not reach the requirements of actual manipulation of the unmanned aerial vehicle (UAV), resulting inimproved the unmanned aircraft crash in practical control risk. For this, put forward a kind of optimization algorithm basedon virtual reality technology of unmanned aerial vehicle (UAV) Angle control method of uav Angle control model is set up,get the Angle control parameters, the use of the time error compensation, get new unmanned corner state model, using thenew model can realize accurate control of unmanned aerial vehicle (UAV) corner. The simulation experimental results showthat the use of unmanned aerial vehicle (UAV) based on virtual reality technology optimization algorithm Angle controlmethod can carry on the accurate control of unmanned aerial vehicle (UAV) corner, effect is satisfactory.
作者 付媛媛
出处 《科技通报》 北大核心 2014年第12期130-132,共3页 Bulletin of Science and Technology
关键词 虚拟现实技术 无人机 转角控制 时间补偿 virtual reality technology Unmanned aerial vehicle(UAV) Angle control Time compensation
  • 相关文献

参考文献5

二级参考文献31

  • 1王宪成,李勃,李莉.基于Virtools 4.0的某型船艇柴油机虚拟维修关键技术研究[J].装甲兵工程学院学报,2010,24(2):27-31. 被引量:12
  • 2陈洪波,王强,徐晓蓉.用于线段特征提取的改进Hough变换[J].计算机工程与应用,2004,40(21):75-78. 被引量:14
  • 3胡小强.虚拟现实技术及应用[M].北京:高等教育出版社,2004,5.
  • 4Samer W G V, Saab S and Mickle M H. Learning control algorithms for tracking slowly varying trajectories [J]. IEEE Trans. on System, Man and Cybernetics, 1997,27 : 657-670.
  • 5Arif M,Ishihara T, and Inooka H. Incorporation of Experience in Iterative Learning Controllers Using Locally Weighted Learning [J]. Automatiea,2001,37:881-888.
  • 6Xu J X and Xu J. On Iterative Learning From Different Tracking Tasks in The Presence of Time-varying Uncertainties [J]. IEEE Trans. on System,Man,Cybernetics, 2004,33:589-597.
  • 7XU J X. Direct Learning of Control Efforts For Trajectories With Different Magnitude Scales [J]. Automatica, 1997,33(12) :2191-2195.
  • 8XU J X. Direct Learning of Control Efforts For Trajectories With Different Time Scales [J]. IEEE Trans. on Automatic Control, 1998,43 (7) : 1027-1030.
  • 9张茁生.刘贵忠.非平稳信号自适应表示的理论、算法及应用[M].西安:西安交通大学,2001.
  • 10Sanner M and Slotine J. Gaussian Networks For Direct Adaptive Control [J]. IEEE Trans. on Neural Networks, 1992,3 (6) : 837-863.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部