期刊文献+

微波液相合成法制备Cu_2ZnSnS_4纳米颗粒及其薄膜的研究 被引量:1

Study on the preparation of Cu_2ZnSnS_4 nanoparticles and films by microwave irradiation assisted solvothermal method
下载PDF
导出
摘要 采用乙二醇作为溶剂,硫代乙酰胺作为硫源,通过微波液相合成法制备出颗粒大小均一的Cu2ZnSnS4(CZTS)纳米颗粒。采用XRD、Raman、EDS、TEM以及UV-Vis-Nir等表征手段对所制备的纳米颗粒的物相、元素比例、形貌以及光学性能进行了分析。测试结果表明,所制备的CZTS纳米颗粒为(112)择优取向的锌黄锡矿结构,纳米颗粒的平均尺寸约为3.4nm,其光学带隙为1.85eV,呈现出明显的量子尺寸效应导致的光学带隙蓝移现象。将CZTS纳米颗粒制成CZTS墨水并滴涂烘干形成了CZTS薄膜,其XRD和SEM结果表明,所制备的CZTS薄膜具有良好的结晶性,且表面较为致密。光照与暗态的I-V曲线测试表明,所制备薄膜具有明显的光电导效应。 In this paper,Cu2 ZnSnS4 (CZTS)nanoparticles were synthesized with ethylene glycol as solvent and thioacetamide as sulfur source by microwave irradiation assisted solvothermal method.The structure,shape, composition and optical properties of as-synthesized CZTS nanoparticles were investigated with X-ray diffrac-tion,Raman spectroscopy,scanning electron microscopy,energy dispersive spectrometer and UV-Vis-Nir spec-troscopy.The results show that the as-synthesized nanoparticles have kesterite structure and stoichiometric composition.The average size of the CZTS nanoparticles was about 3.4 nm.And the band gap of CZTS nanopar-ticles was 1.85 eV,which shows an apparent band gap blue-shift due to the quantum size effect.CZTS ink was formed from CZTS nanoparticles and then CZTS thin films were on glass substrates by drop casting (ink-print method).The results of XRD and SEM from the CZTS thin films show the as-prepared CZTS thin film has a good crystalline and the surface is compact.The CZTS thin film has an obvious photoconductive effect by I-V test under light illumination and darkness.
出处 《功能材料》 EI CAS CSCD 北大核心 2015年第3期3028-3032,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(61176062) 中央高校基本科研业务费专项资金资助项目(CXLX13_150) 江苏省普通高校研究生科研创新计划资助项目(CXLX13_150) 南京航空航天大学博士学位论文创新创优基金资助项目(BCXJ13-12)
关键词 Cu2ZnSnS4 光电导效应 微波液相合成法 薄膜 Cu2ZnSnS4 photoconductive effect microwave irradiation assisted solvothermal method thin film
  • 相关文献

参考文献27

  • 1YanYong,ZhangYanxia,LiShasha,etal.SynthesispathGwaysofCIGSfromanamorphousprecursorfilm[J].JourGnalofFunctionalMaterials,2012,43(21):2902-2911.
  • 2ZhangLeng,ZhangWeijia,SongDengyuan,etal.StateGofGartsofvacuumfabricationtechnologyofCIGSthinfilmanditssputteringtarget[J].JournalofFunctionalMateriGals,2013,44(14):1990-1994.
  • 3KiW,HillhouseH W.EarthGabundantelementphotovolGtaicsdirectlyfromsolubleprecursorswithhighyielduGsinganonGtoxicsolvent[J].AdvEnergy Mater,2011,1(5):732-735.
  • 4JiangFeng,ShenHonglie,JinJiale,etal.FabricationandoptoelectronicpropertyofCu2ZnSnS4filmandrelatedsoGlarcell[J].JournalofFunctionalMaterials,2012,43(15):2040-2044.
  • 5Tsukasa W,TomokazuS,ShinT,etal.6% EfficiencyCu2ZnSnS4GbasedthinfilmsolarcellsusingoxideprecurGsorsbyopenatmospheretypeCVD[J].JournalofMateriGalsChemistry,2012,22(9):4021-4024.
  • 6JiangFeng,ShenHonglie,Wang Wei.OpticalandelectriGcalpropertiesofCu2ZnSnS4filmpreparedbysulfurizationmethod[J].JournalofElectronicMaterials,2012,41(8):2204-2209.
  • 7TooruT,AkihiroY,DaisukeS,etal.InfluenceofcompoGsitionratioonpropertiesofCu2ZnSnS4thinfilmsfabricaGtedbycoGevaporation[J].Thin Solid Films,2010,518(21):S29-S33.
  • 8ShafaatA,ReuterK B,OkiG,etal.AhighefficiencyelectrodepositedCu2ZnSnS4solarcell[J].AdvancedEnerGgyMaterials,2012,2(2):253-259.
  • 9GaoChao,ShenHonglie,JiangFeng,etal.PreparationofCu2ZnSnS4filmbysulfurizingsolutiondepositedprecurGsors[J].AppliedSurfaceScience,2012,261(1):189-192.
  • 10KazuyaM,KunihikoT,YukiF,etal.InfluenceofH2SconcentrationonthepropertiesofCu2ZnSnS4thinfilmsandsolarcellspreparedbysolGgelsulfurization[J].SolarEnergy Materials & SolarCells,2011,95(10):2855-2860.

二级参考文献18

  • 1Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells. Chem. Sus. Chem., 2008, 1(11): 880-891.
  • 2Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl., 2008, 16(3): 235-239.
  • 3Tanaka K, Moritake N, Uchiki H. Preparation of Cu2ZnSnS4 thin films by sulfurizing Sol-Gel deposited precursors. Solar Energy Materials & Solar Cells, 2007, 91(13): 1199-1201.
  • 4Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater., 2010, 22(20): E156-E159.
  • 5Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 1961, 32(3): 510-519.
  • 6Katagiri H. Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 2005, 480-481: 426-432.
  • 7Bhattacharya R N, Batchelor W, Hiltner J F, et al. Thin-film CuIn1-xGaxSe2 photovoltaic cells from solution-based precursor layers. Appl. Phys. Lett., 1999, 75(10): 1431-1437.
  • 8Mitzi D B, Yuan M, Liu W, et al. A high-efficiency solution- deposited thin-film photovoltaic device. Adv. Mater., 2008, 20(19): 3657-3662.
  • 9Ennaoui A, Lux-Steiner M, Weber A, et al. Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films, 2009, 517(7): 2511-2514.
  • 10Gur I, Fromer N A, Geier M L, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 2005, 310(5747): 462-465.

共引文献7

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部