期刊文献+

基于FCM和离散正则化的多目标图像分割 被引量:6

A Multi-Objective Image Segmentation Method Based on FCM and Discrete Regularization
下载PDF
导出
摘要 针对机器视觉中的多目标图像分割问题,提出一种适用于多目标物体的图像分割算法.首先对图像进行图像增强预处理;然后采用基于直方图的模糊C均值聚类算法完成分类任务,实现图像的初分割,将分类后的像素作为种子集;最后利用离散正则化的半监督方法得到自动修正分类结果.实验结果表明,与已有的多目标分割算法相比,该算法分割结果更加精确. To address the problem of multi-objective image segmentation in computer vision, a multi-objectiveimage segmentation method based on fuzzy C-Means and discrete regularization is proposed in this paper.First, the method preprocesses an input image with image enhancement. Secondly, the FCM clusteringalgorithm based on histogram is used to classify the pixels in the images into the different categories andrealize the initial segmentations. Finally a discrete regularization algorithm as a semi-supervised method revisesthe classified results. The experiments demonstrate the superior performance of the proposed methodin terms of segmentation accuracy.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第1期142-146,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家教育部博士点基金(20130061110054)
关键词 图像分割 模糊C均值聚类 离散正则化 image segmentation fuzzy C-means clustering discrete regularization
  • 相关文献

参考文献14

  • 1Peng Bo, Zhang Lei, Zhang David. A survey of graph theoreticalapproaches to image segmentation [J]. Pattern Recognition,2013, 46(3): 1020-1038.
  • 2Lezoray O, Cardot H. Cooperation of color pixel classificationschemes and color watershed: a study for microscopic images[J]. IEEE Transactions on Image Processing, 2002, 11(7):783-789.
  • 3Grady L. Random walker for image segmentation [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2006, 28(11): 1768-1783.
  • 4Dumont M, Marée R, Geurts P, et al. Random subwindows andmultiple output decision trees for generic image annotation [OL].[2013-11-01]. http://www.researchgate.net/publication/22400795.
  • 5Tang Ming, Ma Songde. General scheme of region competitionbased on scale space [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2001, 23(12): 1366-1378.
  • 6Balafar M A, Ramli A B D R, Saripan M I, et al. Medical imagesegmentation using fuzzy c-mean (FCM) and user specifieddata[J]. Journal of Circuits, Systems and Computers, 2010,19(1): 1-14.
  • 7陈圣国,孙正兴,周杰.基于FCM和随机游走的地层图像分割方法[J].电子学报,2013,41(3):526-531. 被引量:12
  • 8许晓丽,卢志茂,张格森,李纯,张琦.改进近邻传播聚类的彩色图像分割[J].计算机辅助设计与图形学学报,2012,24(4):514-519. 被引量:27
  • 9Ta V T, Bougleux S, Elmoataz A, et al. Nonlocal anisotropicdiscrete regularization for image, data filtering and clustering[OL]. [2013-11-01]. http://www.researchgate.net/publication/29618337.
  • 10Elmoataz A, Lezoray O, Bougleux S. Nonlocal discrete regularizationon weighted graphs: a framework for image andmanifold processing [J]. IEEE Transactions on Image Processing,2008, 17 (7):1047-1060.

二级参考文献31

  • 1丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 2Macqueen J.Some methods for classification and analysis ofmultivariate observations[OL].[2011-07-17].http:??www-m9.ma.tum.de?foswiki?pub?WS2010?CombOptsem?kMeans.pdf
  • 3Navarro J F,Frenk C S,White S D M.A universal densityprofile from hierarchical clustering[J].Astrophysical JournalLetters,1997,490(2):493 508
  • 4Dunn J C.Fuzzy relative of the ISODATA process and its usein detecting compact well-separated clusters[J].Journal ofCybernetics,1973,3(3):32 57
  • 5Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2000,22(8):888 905
  • 6Frey B J,Dueck D.Clustering by passing messages betweendata points[J].Science,2007,315(5814):972 976
  • 7Mézard M.Where are the exemplars?[J].Science,2007,315(5814):949 951
  • 8Comaniciu D,Meer P.Mean shift:a robust approach towardfeature space analysis[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2002,24(5):603 619
  • 9Tao W B,Jin H,Zhang Y M.Color image segmentationbased on mean shift and normalized cuts[J].IEEETransactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2007,37(5):1382 1389
  • 10Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [ J ]. Cybernetics and Systems, 1973,3(3) :32- 57.

共引文献37

同被引文献50

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部